【題目】如圖,已知一次函數(shù)y=kx﹣4k+5的圖象與反比例函數(shù)y= (x>0)的圖象相交于點A(p,q).當一次函數(shù)y的值隨x的值增大而增大時,p的取值范圍是

【答案】 <p<4
【解析】解:一次函數(shù)y=kx﹣4k+5中,令x=4,則y=5, 故一次函數(shù)y=kx﹣4k+5的圖象經(jīng)過點(4,5),
如圖所示,過點(4,5)分別作y軸與x軸的垂線,分別交反比例函數(shù)圖象于B點和C點,
把y=5代入y= ,得x= ;
把x=4代入y= ,得y= ,
所以B點坐標為( ,5),C點坐標為(4, ),
因為一次函數(shù)y的值隨x的值增大而增大,
所以點A(p,q)只能在B點與C點之間的曲線上,
所以p的取值范圍是 <p<4.
所以答案是: <p<4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,ADBC,AB=AD,∠BAD的平分線AEBC于點E,連接DE

(1)求證:四邊形ABED是菱形;

(2)若∠DEC=60°,CE=2DE=4cmCD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點B落在點E處,AEDC的交點為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]2,[3]3,[2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<3>=4,<-2.5>=-2.根據(jù)上述規(guī)定,解決下列問題:

(1)[4.5]______,<3.01>=____;

(2)x為整數(shù),且[x]+<x>=2 017,求x的值;

(3)x,y滿足方程組,求x,y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(3,2),B(4,3),C(1,1)

(1)在圖中作出ABC關于y軸對稱的A1B1C1;寫出點A1,B1,C1的坐標(直接寫答案):A1 ;B1 ;C1 ;

(2)A1B1C1的面積為 ;

(3)在y軸上畫出點P,使PB+PC最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好地保護環(huán)境,某區(qū)污水處理廠決定購買A,B兩種型號污水處理設備10臺,其中每臺的價格、月處理污水量如下表.已知購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

(1)求ab的值;

(2)某區(qū)污水處理廠決定購買污水處理設備的資金既不少于108萬元也不超過110萬元,問有幾種購買方案?每月最多能處理污水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,若將類似于ab、c、d四個圖的圖形稱做平面圖,則其頂點數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關系.觀察圖b和表中對應的數(shù)值,探究計數(shù)的方法并作答.

1)數(shù)一數(shù)每個圖中各有多少個頂點、多少條邊,這些邊圍出多少個區(qū)域并填表:

平面圖

a

b

c

d

頂點數(shù)(S)

7

邊數(shù)(M)

9

區(qū)域數(shù)(N)

3

2)根據(jù)表中數(shù)值,寫出平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關系為 ;

3)如果一個平面圖有20個頂點和11個區(qū)域,那么利用(2)中得出的關系可知這個平面圖有 條邊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是(
A.1,2,3
B.1,1,
C.1,1,
D.1,2,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是ABC的中線.

(1)用無刻度的直尺畫出ABC的高CH(保留畫圖痕跡);

(2)求ACE的面積.

查看答案和解析>>

同步練習冊答案