【題目】如圖,在矩形紙片中,已知,,點(diǎn)在邊上移動(dòng),連接,將多邊形沿直線折疊,得到多邊形,點(diǎn)、的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、.
(1)當(dāng)恰好經(jīng)過(guò)點(diǎn)時(shí)(如圖1),求線段的長(zhǎng);
(2)若分別交邊、于點(diǎn)、,且(如圖2),求的面積;
(3)在點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)的過(guò)程中,求點(diǎn)運(yùn)動(dòng)的路徑長(zhǎng).
【答案】(1) ;(2);(3).
【解析】
試題分析:(1)根據(jù)折疊的性質(zhì)可得,,,,根據(jù)勾股定理求得,即可得,易證,根據(jù)相似三角形的性質(zhì)即可求得CE的長(zhǎng);(2)如圖2-1,連接AC,根據(jù)銳角三角函數(shù)求得∠BAC=60°,再求得,根據(jù)等腰直角三角形的性質(zhì)求得,即可求得的面積;(3)如圖2-2,連接A,則,點(diǎn)的運(yùn)動(dòng)路徑是以點(diǎn)A為圓心,以AC為半徑的圓弧,根據(jù)弧長(zhǎng)公式計(jì)算即可.
試題解析:
(1)如圖1,由折疊得,,,,,
由勾股定理得,,
所以,
因?yàn)?/span>,所以 ,
又因,所以
又,所以
所以,即,所以
(2)如圖2-1,連接AC,因?yàn)?/span>∠BAC=,所以∠BAC=60°,
故∠DAC=30°,又,所以,
由折疊得,,所以,
所以,即,,
因?yàn)?/span>,所以;
(3) 如圖2-2,連接A,則,
所以點(diǎn)的運(yùn)動(dòng)路徑是以點(diǎn)A為圓心,以AC為半徑的圓;當(dāng)點(diǎn)E運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)恰好在CD的延長(zhǎng)線上,此時(shí),
所以點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,BD是矩形ABCD的對(duì)角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點(diǎn),連接AB',C'D,AD',BC',如圖②.
(1)求證:四邊形AB'C'D是菱形;
(2)四邊形ABC'D′的周長(zhǎng)為 ;
(3)將四邊形ABC'D'沿它的兩條對(duì)角線剪開,用得到的四個(gè)三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CED=35°,如圖,則∠EAB是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是 .
(2)連接NB,若AB=8cm,△NBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng);
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長(zhǎng)值最小?若存在,標(biāo)出點(diǎn)P的位置并求△PBC的周長(zhǎng)最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)與小剛都住在安康小區(qū),在同一所學(xué)校讀書.某天早上,小強(qiáng)從安康小區(qū)站乘坐校車去學(xué)校,途中需??jī)蓚(gè)站點(diǎn)才能到達(dá)學(xué)校站點(diǎn),且每個(gè)站點(diǎn)停留分鐘,校車行駛途中始終保持勻速.當(dāng)天早上,小剛從安康小區(qū)站乘坐出租車沿相同路線出發(fā),出租車勻速行駛,比小強(qiáng)乘坐的校車早分鐘到學(xué)校站點(diǎn).他們乘坐的車輛從安康小區(qū)站出發(fā)所行駛路程(千米)與行駛時(shí)間(分鐘)之間的函數(shù)圖象如圖所示.
(1)求點(diǎn)的縱坐標(biāo)的值;
(2)小剛乘坐出租車出發(fā)后經(jīng)過(guò)多少分鐘追到小強(qiáng)所乘坐的校車?并求此時(shí)他們距學(xué)校站點(diǎn)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,飛機(jī)在一定高度上沿水平直線飛行,先在點(diǎn)處測(cè)得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時(shí)測(cè)得小島的俯角為.如果小島高度忽略不計(jì),求飛機(jī)飛行的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com