【題目】如圖,將□ABCD的邊AB延長至點(diǎn)E,使AB=BE,連接DE,EC,DE交BC于點(diǎn)O.
(1)求證:四邊形BECD是平行四邊形;
(2)連接BD,若∠BOD=2∠A,求證:四邊形BECD是矩形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)證出BE=DC,根據(jù)平行四邊形的判定與性質(zhì)得到四邊形BECD為平行四邊形;
(2)欲證明四邊形BECD是矩形,只需推知BC=ED即可.
試題解析:(1)∵四邊形ABCD是平行四邊形
∴AB=CD,AB∥CD,
又∵AB=BE,
∴BE=DC,
又∵AE∥CD,
∴四邊形BECD為平行四邊形;
(2)由(1)知,四邊形BECD為平行四邊形
∴OD=OE,OC=OB,
∵四邊形ABCD為平行四邊形,
∴∠A=∠BCD
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四邊形BECD為矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請?jiān)谒o網(wǎng)格中按下列要求操作:
⑴ 請?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系, 使A點(diǎn)坐標(biāo)為(2,4),B點(diǎn)坐標(biāo)為(4,2);
⑵ 請?jiān)冢?)中建立的平面直角坐標(biāo)系的第一象限內(nèi)的格點(diǎn)上確定點(diǎn)C, 使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形, 且腰長是無理數(shù), 則C點(diǎn)坐標(biāo)是 , △ABC的周長是 (結(jié)果保留根號);
⑶ 以(2)中△ABC的點(diǎn)C為旋轉(zhuǎn)中心、旋轉(zhuǎn)180°后的△A′B′C, 連結(jié)AB′和A′B, 試說出四邊形ABA′B′是何特殊四邊形, 并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上有點(diǎn)A(1,0),點(diǎn)A第一次跳動至點(diǎn)A1(﹣1,1),第二次向右跳動3個(gè)單位至點(diǎn)A2(2,1),第三次跳動至點(diǎn)A3(﹣2,2),第四次向右跳動5個(gè)單位至點(diǎn)A4(3,2),……,依此規(guī)律跳動下去,點(diǎn)A第2018次跳動至點(diǎn)A2018的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項(xiàng) 式相乘的結(jié)果是a2-a-6的是( )
A.(a-2)(a+3)
B.(a+2) (a-3)
C.(a-6)(a+1)
D.(a+6)(a-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)560戶居民的家庭收入情況.他從中隨機(jī)調(diào)查了一定戶數(shù)的家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤x<800 | 2 | 5% |
800≤x<1000 | 6 | 15% |
1000≤x<1200 | a | 40% |
1200≤x<1400 | 9 | 22.5% |
1400≤x<1600 | b | c |
1600≤x<1800 | 2 | 5% |
合計(jì) | 40 | 100% |
根據(jù)以上提供的信息,解答下列問題:
(1)頻數(shù)分布表中:a= ,b= ,c= .
(2)補(bǔ)全頻數(shù)分布直方圖.
(3)請估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果某同學(xué)的座位是第2排第3列,把它記作(3,2),那么(5,4)表示什么位置?_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛我永州”中學(xué)生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com