【題目】已知拋物線y=x2+(2n﹣1)x+n2﹣1(n為常數(shù)).
(1)當該拋物線經(jīng)過坐標原點,并且頂點在第四象限時,求出它所對應的函數(shù)關系式;
(2)設A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標.如果不存在,請說明理由.
【答案】(1)y=x2﹣3x;(2)①矩形ABCD的周長為6,②當x=時,矩形ABCD的周長C最大值為,此時點A的坐標為A(,).
【解析】
(1)將原點坐標代入拋物線的解析式中,即可求出n的值,然后根據(jù)拋物線頂點在第四象限將不合題意的n值舍去,即可得出所求的二次函數(shù)解析式;
(2)①先根據(jù)拋物線的解析式求出拋物線與x軸另一交點E的坐標,根據(jù)拋物線和矩形的對稱性可知:OB的長,就是OE與BC的差的一半,由此可求出OB的長,即B點的坐標,然后代入拋物線的解析式中即可求出B點縱坐標,也就得出了矩形AB邊的長.進而可求出矩形的周長;②思路同①可設出A點坐標(設橫坐標,根據(jù)拋物線的解析式表示縱坐標),也就能表示出B點的坐標,即可得出OB的長,同①可得出BC的長,而AB的長就是A點縱坐標的絕對值,由此可得出一個關于矩形周長和A點縱坐標的函數(shù)關系式,根據(jù)二次函數(shù)的性質可得出矩形周長的最大值及對應的A的坐標.
(1)由已知條件,得n2﹣1=0
解這個方程,得n1=1,n2=﹣1
當n=1時,得y=x2+x,此拋物線的頂點不在第四象限.
當n=﹣1時,得y=x2﹣3x,此拋物線的頂點在第四象限.
∴所求的函數(shù)關系式為y=x2﹣3x;
(2)由y=x2﹣3x,
令y=0,得x2﹣3x=0,
解得x1=0,x2=3
∴拋物線與x軸的另一個交點為E(3,0)
∴它的頂點為,對稱軸為直線,其大致位置如圖所示,
①∵BC=1,易知OB=×(3﹣1)=1.
∴B(1,0)
∴點A的橫坐標x=1,又點A在拋物線y=x2﹣3x上,
∴點A的縱坐標y=12﹣3×1=﹣2.
∴AB=|y|=|﹣2|=2.
∴矩形ABCD的周長為:2(AB+BC)=2×(2+1)=6.
②∵點A在拋物線y=x2﹣3x上,故可設A點的坐標為(x,x2﹣3x),
∴B點的坐標為(x,0).
∴BC=3﹣2x,A在x軸下方,
∴x2﹣3x<0,
∴AB=|x2﹣3x|=3x﹣x2
∴矩形ABCD的周長C=2[(3x﹣x2)+(3﹣2x)]=,
∵a=﹣2<0,拋物線開口向下,二次函數(shù)有最大值,
∴當x=時,矩形ABCD的周長C最大值為.
此時點A的坐標為A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE.
(1)求證:DE是⊙O的切線;
(2)若CD=6cm,DE=5cm,求⊙O直徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩棟居民樓之間的距離CD=30米,樓AC和BD均為10層,每層樓高3米.
(1)上午某時刻,太陽光線GB與水平面的夾角為30°,此刻B樓的影子落在A樓的第幾層?
(2)當太陽光線與水平面的夾角為多少度時,B樓的影子剛好落在A樓的底部.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取進行調查,根據(jù)調查結果繪制了如圖不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
運動項目 | 頻數(shù)人數(shù) |
羽毛球 | 30 |
籃球 | a |
乒乓球 | 36 |
排球 | b |
足球 | 12 |
請根據(jù)以上圖表信息解答下列問題:
頻數(shù)分布表中的______,______;
在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為______度;
全校有多少名學生選擇參加乒乓球運動?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖的方格紙中(每個小方格的邊長都是1個單位)有一點O和△ABC.
(1)請以點O為位似中心,把△ABC縮小為原來的一半(不改變方向),得到△A′B′C′;
(2)請用適當?shù)姆绞矫枋觥?/span>A′B′C′的頂點A′、B′、C′的位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解八年級學生雙休日的課外閱讀情況,學校隨機調查了該年級25名學生,得到了一組樣本數(shù)據(jù),其統(tǒng)計表如下:
八年級25名學生雙休日課外閱讀時間統(tǒng)計表
閱讀時間 | 1小時 | 2小時 | 3小時 | 4小時 | 5小時 | 6小時 |
人數(shù) | 3 | 4 | 6 | 3 | 2 |
(1)請求出閱讀時間為4小時的人數(shù)所占百分比;
(2)試確定這個樣本的眾數(shù)和平均數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學課外實踐小組一次活動中,測量一座樓房的高度.如圖,在山坡坡腳A處測得這座樓房的樓頂B點的仰角為60°,沿山坡往上走到C處再測得B點的仰角為45°,已知山坡的坡比i=1:,OA=200m,且O、A、D在同一條直線上.
(1)求樓房OB的高度;
(2)求山坡上AC的距離(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,點E在AB邊上,將紙片沿CE折疊,點B落在點F處,EF,CF分別交AD于點G,H,且EG=GH,則AE的長為( )
A. B. 1C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,O為坐標原點,拋物線y=ax2﹣2ax﹣3a分別交x軸于A、B兩點(點A在點B的側),與y軸交于點C,連接AC,tan∠ACO=.
(1)如圖l,求a的值;
(2)如圖2,D是第一象限拋物線上的點,過點D作y軸的平行線交CB的延長線于點E,連接AE交BD于點F,AE=BD,求點D的坐標;
(3)如圖3,在(2)的條件下,連接AD,P是第一象限拋物線上的點(點P與點D不重合),過點P作AD的垂線,垂足為Q,交x軸于點N,點M在x軸上(點M在點N的左側),點G在NP的延長線上,MP=OG,∠MPN﹣∠MOG=45°,MN=10.點S是△AQN內一點,連接AS、QS、NS,AS=AQ,QS=SN,求QS的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com