【題目】如圖,矩形ABCD的對角線經(jīng)過原點(diǎn),各邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為________.
【答案】﹣1或6
【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個(gè)直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2-5k=6,再解出k的值即可.
如圖:
∵四邊形ABCD、HBEO、OECF、GOFD為矩形,
又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,
∴S△CBD-S△BEO-S△OFD=S△ADB-S△BHO-S△OGD,
∴S四邊形CEOF=S四邊形HAGO=2×3=6,
∴xy=k2-5k=6,
解得k=-1或k=6.
故答案為:-1或6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移6個(gè)單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;
(3)P為x軸上一動點(diǎn),當(dāng)AP+CP有最小值時(shí),求這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形的判定
(1)有一個(gè)角是________________的三角形是直角三角形.
(2)有兩個(gè)角________________的三角形是直角三角形.
(3)勾股定理的逆定理:如果三角形兩邊的平方和等于________________,那么這個(gè)三角形是直角三角形.
(4)如果三角形一邊上的________________等于這邊的一半,那么這個(gè)三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,點(diǎn).
(1)點(diǎn)為邊上一點(diǎn)(點(diǎn)不與重合),沿將紙片折疊得的對應(yīng)點(diǎn),邊與軸交于點(diǎn).
①如圖1,當(dāng)點(diǎn)剛好落在軸上時(shí),求點(diǎn)的坐標(biāo)
②如圖2,當(dāng)時(shí),若線段在軸上移動得到線段(線段平移時(shí)不動),當(dāng)△A′O′Q′周長最小時(shí),求OO′的長度.
(2)如圖3,若點(diǎn)為邊上一點(diǎn)(點(diǎn)不與重合),沿將紙片折疊得的對應(yīng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開挖點(diǎn)C在AB的延長線上,設(shè)想過C點(diǎn)作直線AB的垂線L,過點(diǎn)B作一直線(在山的旁邊經(jīng)過),與L相交于D點(diǎn),經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開挖?(≈1.414,精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著中國經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過點(diǎn)C作AB的平行線交AE的延長線于點(diǎn)F,連接BF.
(1) 求證:CF=AD;
(2) 若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC延長線上一點(diǎn),DE⊥AB于點(diǎn)E,EF⊥BC于點(diǎn)F.若CD=3AE,CF=6,則AC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,點(diǎn)是的中點(diǎn),點(diǎn)是邊上一點(diǎn).
(1)直線垂直于于點(diǎn)交于點(diǎn)(如圖1),求證;
(2)直線垂直于,垂足為交的延長線于點(diǎn)(如圖2).求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com