【題目】下列敘述正確的是(

A. 打開電視機(jī),中央一套正在直播巴西世界杯足球賽.是必然事件

B. 若甲乙兩人六次跳遠(yuǎn)成績的方差為,,則甲的成績更穩(wěn)定

C. 從一副撲克牌中隨即抽取一張一定是紅桃

D. 任意一組數(shù)據(jù)的平均數(shù)一定等于它的眾數(shù)

【答案】B

【解析】

根據(jù)隨機(jī)事件以及眾數(shù)和和算術(shù)平均數(shù)的求法分別分析得出即可.

解:A、“打開電視機(jī),中央一套正在直播巴西世界杯足球賽.是隨機(jī)事件,故A錯誤;
B、若甲乙兩人六次跳遠(yuǎn)成績的方差為S2=0.1,S2=0.3,則甲的成績更穩(wěn)定,利用方差的意義,故B正確;
C、從一副撲克牌中隨即抽取一張不一定是紅桃K,故C錯誤;
D、任意一組數(shù)據(jù)的平均數(shù)不一定等于它的眾數(shù),故D錯誤.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,AC=6cm,BC=8cm,點(diǎn)D從點(diǎn)C出發(fā),以2 cm/s 的速度沿折線CAB向點(diǎn)B運(yùn)動,同時點(diǎn)E從點(diǎn)B出發(fā),以1 cm/s的速度沿BC邊向點(diǎn)C運(yùn)動,設(shè)點(diǎn)E運(yùn)動的時間為t (單位:s)(0<t<8).

(1) 當(dāng)BDE 是直角三角形時,求t的值;

(2)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,①設(shè)它的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;②是否存在某個時刻t,使平行四邊形CDEF為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°∠A的平分線交BCDEAB上一點(diǎn),DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是邊BC上的動點(diǎn),連接AD,點(diǎn)C關(guān)于直線AD的對稱點(diǎn)為點(diǎn)E,射線BE與射線AD交于點(diǎn)F.

1)在圖1中,依題意補(bǔ)全圖形;

2)記),求的大;(用含的式子表示)

3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一批30瓦的LED燈泡和普通白熾燈泡進(jìn)行銷售,其進(jìn)價與標(biāo)價如下表:

LED燈泡

普通白熾燈泡

進(jìn)價(元)

45

25

標(biāo)價(元)

60

30

(1)該商場購進(jìn)了LED燈泡與普通白熾燈泡共300個,LED燈泡按標(biāo)價進(jìn)行銷售,而普通白熾燈泡打九折銷售,當(dāng)銷售完這批燈泡后可獲利3200元,求該商場購進(jìn)LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?

(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進(jìn)這兩種燈泡120個,在不打折的情況下,請問如何進(jìn)貨,銷售完這批燈泡時獲利最多且不超過進(jìn)貨價的30%,并求出此時這批燈泡的總利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,,分別為垂足,的垂直平分線于點(diǎn),交于點(diǎn),.

求證:(1;(2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊成績的中位數(shù)是 分,乙隊成績的眾數(shù)是 分;

(2)計算乙隊的平均成績和方差;

(3)已知甲隊成績的方差是1.4,則成績較為整齊的是 隊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)邊上,點(diǎn)邊上,滿足,,若,,則的面積為( .

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OA=2,OB=4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰RtABC,

(1)C點(diǎn)的坐標(biāo);

(2)如圖2,Py軸負(fù)半軸上一個動點(diǎn),當(dāng)P點(diǎn)向y軸負(fù)半軸向下運(yùn)動時,以P為頂點(diǎn),PA為腰作等腰RtAPD,過DDEx軸于E點(diǎn),求OPDE的值;

(3)如圖3,已知點(diǎn)F坐標(biāo)為(2,2),當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動時,RtFGH,始終保持∠GFH=90,FGy軸負(fù)半軸交于點(diǎn)G(0,m),FHx軸正半軸交于點(diǎn)H(n,0),當(dāng)G點(diǎn)在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動時,以下兩個結(jié)論:①mn為定值;②m+n為定值,其中只有一個結(jié)論是正確的,請找出正確的結(jié)論,并求出其值.

查看答案和解析>>

同步練習(xí)冊答案