【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn),∠EDF=90°

1)(觀察發(fā)現(xiàn))如圖①,若點(diǎn)E、F分別為ABAC上的點(diǎn),則圖中全等三角形一共有 對(duì);

2)(類比探究)若將∠EDF繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到E、F點(diǎn)分別在AB、CA延長(zhǎng)線上時(shí),BE=AF嗎?請(qǐng)利用圖②說(shuō)明理由.

3)(解決問(wèn)題)連結(jié)EF,把△EDF把繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到DF與△ABC的腰所在的直線垂直時(shí),請(qǐng)直接寫(xiě)出∠BDF的度數(shù).

【答案】13;(2BE=AF;見(jiàn)解析;(345°或135°.

【解析】

1)有3對(duì),即△EDB≌△FDA,△EDA≌△FDC,△ADB≌△ADC.根據(jù)等腰三角形的性質(zhì)可得出AD=BD、∠EBD=FAD,根據(jù)同角的余角相等可得出∠BDE=ADF,由此即可證出△BDE≌△ADFASA),其余同理可證得;
2)根據(jù)等腰三角形的性質(zhì)及等角的補(bǔ)角相等可得出∠EBD=FADBD=AD,根據(jù)同角的余角相等可得出∠BDE=ADF,由此即可證出△EDB≌△FDAASA),再根據(jù)全等三角形的性質(zhì)即可得出BE=AF

3)畫(huà)出符合條件的圖形即可求解.

1)有3對(duì),即△EDB≌△FDA,△EDA≌△FDC,△ADB≌△ADC.證明如下:

∵AB=AC,點(diǎn)DBC的中點(diǎn),

∴∠ADB=∠ADC=90°,BD=CD,

∴△ADB≌△ADC;

∵∠EDB+∠EDA=90°,∠EDA+∠FDA=90°

∴∠EDB=∠FDA

△EDB△FDA中,

∴△EDB≌△FDA

同理可證△EDA≌△FDC.

2BE=AF,證明如下:

連接AD,如圖所示.

∵∠ABD=∠BAD=45°,

∴∠EBD=∠FAD=135°

∵∠EDB+∠BDF=90°∠BDF+∠FDA=90°,

∴∠EDB=∠FDA

△EDB△FDA中,,

∴△EDB≌△FDAASA),

∴BE=AF

345°135°.如圖所示:

∵DFAC,

∴∠CDF=45°,

∴∠BDF=135°;

或者

∵DFAB,

∴∠BDF=45°;

故答案是:45°135°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的邊BCx軸重合,B、C對(duì)應(yīng)的橫坐標(biāo)是一元二次方程的兩根,EADy軸的交點(diǎn),其縱坐標(biāo)為2,過(guò)A、C作直線交y軸于F.

(1)求直線AF的解析式.

(2)MBC上一點(diǎn),其橫坐標(biāo)為2,在坐標(biāo)軸上,你能否找到一點(diǎn)P,使?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

(3)點(diǎn)Qx軸上一動(dòng)點(diǎn)連接AQ,Q在運(yùn)動(dòng)過(guò)程中AQ+是否存在最小值?若存在,請(qǐng)求出AQ+最小值及Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDAB,BEAC,垂足分別為點(diǎn)D,點(diǎn)E,BE、CD相交于點(diǎn)O.1=2,則圖中全等三角形共有( )

A. 4對(duì)B. 3對(duì)C. 2對(duì)D. 5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D,EBC邊上的兩點(diǎn),ADAE,BECD,∠1=∠2110°,∠BAE60°,則∠CAE的度數(shù)為(

A.10°B.20°

C.30°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),安全快捷、平穩(wěn)舒適的中國(guó)高鐵,為世界高速鐵路的發(fā)展樹(shù)立了新的標(biāo)桿,隨著中國(guó)特色社會(huì)主義進(jìn)入新時(shí)代,作為中國(guó)名片的高速鐵路也將踏上自己的新征程,這就意味著今后外出旅行的路程與時(shí)間將大大縮短,但也有不少游客根據(jù)自已的喜好依然選擇乘坐普通列車,已知從咸寧地到某地的普通列車行駛路程是520千米,是高鐵行駛路程的1.3倍,請(qǐng)完成以下問(wèn)題:

(1)高鐵行駛的路程為_____千米.

(2)若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:三角形紙片ABC中,∠C=90°,AB=12,BC=6,B′是邊AC上一點(diǎn).將三角形紙片折疊,使點(diǎn)B與點(diǎn)B′重合,折痕與BC、AB分別相交于E、F.設(shè)BE=x

1)若x=4,求B′C的長(zhǎng);

2)當(dāng)AFB′是直角三角形時(shí),求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們?cè)趯W(xué)習(xí)實(shí)數(shù)時(shí)畫(huà)了這樣一個(gè)圖,即以數(shù)軸上的單位長(zhǎng)為‘1’的線段作一個(gè)正方形,然后以原點(diǎn)O為圓心,正方形的對(duì)角線長(zhǎng)為半徑畫(huà)弧交數(shù)軸于點(diǎn)A”,請(qǐng)根據(jù)圖形回答下列問(wèn)題:

(1)線段OA的長(zhǎng)度是多少?(要求寫(xiě)出求解過(guò)程)

(2)這個(gè)圖形的目的是為了說(shuō)明什么?

(3)這種研究和解決問(wèn)題的方式體現(xiàn)了 的數(shù)學(xué)思想方法.(將下列符合的選項(xiàng)序號(hào)填在橫線上)

A.數(shù)形結(jié)合 B.代入 C.換元 D.歸納

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠A+C180°,E、F分別在BC、CD上,且ABBEADDF,MEF的中點(diǎn),DM3,BM4,則五邊形ABEFD的面積是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案