【題目】如圖,在四邊形ABCD中,∠A+∠C=180°,E、F分別在BC、CD上,且AB=BE,AD=DF,M為EF的中點(diǎn),DM=3,BM=4,則五邊形ABEFD的面積是_____.
【答案】12
【解析】
延長(zhǎng)BM至G,使MG=BM,連接FG、DG,證明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,證出AB=FG,證明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性質(zhì)即可得DM⊥BM,由五邊形ABEFD的面積=△DBG的面積,可求解.
延長(zhǎng)BM至G,使MG=BM=4,連接FG、DG,如圖所示:
∵M為EF中點(diǎn),
∴ME=MF,
在△BME和△GMF中,
,
∴△BME≌△GMF(SAS),
∴FG=BE,∠MBE=∠MGF,S△BEM=S△GFM,
∴FG∥BE,
∴∠C=∠GFC,
∵∠A+∠C=180°,∠DFG+∠GFC=180°,
∴∠A=∠DFG,
∵AB=BE,
∴AB=FG,
在△DAB和△DFG中,
,
∴△DAB≌△DFG(SAS),
∴DB=DG,S△DAB=S△DFG,
∵MG=BM,
∴DM⊥BM,
∴五邊形ABEFD的面積=△DBG的面積=×BG×DM=×8×3=12,
故答案為:12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點(diǎn)D為BC的中點(diǎn),∠EDF=90°.
(1)(觀察發(fā)現(xiàn))如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),則圖中全等三角形一共有 對(duì);
(2)(類比探究)若將∠EDF繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到E、F點(diǎn)分別在AB、CA延長(zhǎng)線上時(shí),BE=AF嗎?請(qǐng)利用圖②說明理由.
(3)(解決問題)連結(jié)EF,把△EDF把繞點(diǎn)D在平面內(nèi)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到DF與△ABC的腰所在的直線垂直時(shí),請(qǐng)直接寫出∠BDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不等的實(shí)數(shù)根.
⑴求k的取值范圍;
⑵若方程①的兩根的平方和為7,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,.
求a的取值范圍;
是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲和乙一起做游戲,下列游戲規(guī)則對(duì)雙方公平的是( 。
A. 在一個(gè)裝有2個(gè)紅球和3個(gè)白球(每個(gè)球除顏色外都相同)的袋中任意摸出一球,摸到紅球甲獲勝,摸到白球乙獲勝;
B. 從標(biāo)有號(hào)數(shù)1到100的100張卡片中,隨意抽取一張,抽到號(hào)數(shù)為奇數(shù)甲獲勝,否則乙獲勝;
C. 任意擲一枚質(zhì)地均勻的骰子,擲出的點(diǎn)數(shù)小于4則甲獲勝,擲出的點(diǎn)數(shù)大于4則乙獲勝;
D. 讓小球在如圖所示的地板上自由地滾動(dòng),并隨機(jī)地停在某塊方塊上,若小球停在黑色區(qū)域則甲獲勝,若停在白色區(qū)域則乙獲勝
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠以每千克200元的價(jià)格購(gòu)進(jìn)甲種原料360千克,用于生產(chǎn)A、B兩種產(chǎn)品,生產(chǎn)1件A產(chǎn)品或1件B產(chǎn)品所需甲、乙兩種原料的千克數(shù)如下表:
產(chǎn)品/原料 | A | B |
甲(千克) | 9 | 4 |
乙(千克) | 3 | 10 |
乙種原料的價(jià)格為每千克300元,A產(chǎn)品每件售價(jià)3000元,B產(chǎn)品每件售價(jià)4200元,現(xiàn)將甲種原料全部用完,設(shè)生產(chǎn)A產(chǎn)品x件,B產(chǎn)品m件,公司獲得的總利潤(rùn)為y元.
(1)寫出m與x的關(guān)系式;
(2)求y與x的關(guān)系式;
(3)若使用乙種原料不超過510千克,生產(chǎn)A種產(chǎn)品多少件時(shí),公司獲利最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長(zhǎng)溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時(shí)間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線的一部分,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚里溫度在15℃及15℃以上的時(shí)間有多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】駕駛員血液中每毫升的酒精含量大于或等于200微克即為酒駕,某研究所經(jīng)實(shí)驗(yàn)測(cè)得:成人飲用某品牌38度白酒后血液中酒精濃度y(微克/毫升)與飲酒時(shí)間x(小時(shí))之間函數(shù)關(guān)系如圖所示(當(dāng)4≤x≤10時(shí),y與x成反比例).
(1)根據(jù)圖象分別求出血液中酒精濃度上升和下降階段y與x之間的函數(shù)表達(dá)式.
(2)問血液中酒精濃度不低于200微克/毫升的持續(xù)時(shí)間是多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com