若點(diǎn)M(-2,y1),N(-1,y2),P(8,y3)在拋物線數(shù)學(xué)公式上,則下列結(jié)論正確的是


  1. A.
    y1<y2<y3
  2. B.
    y2<y1<y3
  3. C.
    y3<y1<y2
  4. D.
    y1<y3<y2
C
分析:把點(diǎn)M、N、P的橫坐標(biāo)代入拋物線解析式求出相應(yīng)的函數(shù)值,即可得解.
解答:x=-2時(shí),y=-x2+2x=-×(-2)2+2×(-2)=-2-4=-6,
x=-1時(shí),y=-x2+2x=-×(-1)2+2×(-1)=--2=-2,
x=8時(shí),y=-x2+2x=-×82+2×8=-32+16=-16,
∵-16<-6<-2,
∴y3<y1<y2
故選C.
點(diǎn)評:本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,分別求出各函數(shù)值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)y=-
2
x
的圖象上,且x1<0<x2<x3,則y1、y2、y3的大小關(guān)系是(  )
A、y1<y3<y2
B、y2<y3<y3
C、y1<y2<y3
D、y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若點(diǎn)A(2,y1)、B(6,y2)在函數(shù)y=
12x
的圖象上,則y1
 
y2(填“<”或“>”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)A(1,2),B(3,2),C(5,7).若點(diǎn)M(-2,y1),N(-1,y2),K(8,y3)也在二次函數(shù)y=ax2+bx+c的圖象上,則y1,y2,y3從小到大的順序?yàn)?!--BA-->

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•和平區(qū)一模)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知拋物線C1:y=x2,點(diǎn)A(2,4).
(Ⅰ)求直線OA的解析式;
(Ⅱ)直線x=2與x軸相交于點(diǎn)B,將拋物線C1從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng),設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m.
①當(dāng)m為何值時(shí),線段PB最短?
②當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(Ⅲ)將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2:y=x2-x+c,若點(diǎn)D(x1,y1),E(x2,y2)在拋物線C2上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對稱,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

反比例函數(shù)y=-
3
x
,若點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函數(shù)y=-
3
x
圖象上的三點(diǎn),且x1>x2>0>x3,則y1、y2、y3的大小關(guān)系( 。

查看答案和解析>>

同步練習(xí)冊答案