【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為( )
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
由拋物線與x軸有兩個交點得到b2-4ac>0;有拋物線頂點坐標(biāo)得到拋物線的對稱軸為直線x=-1,則根據(jù)拋物線的對稱性得拋物線與x軸的另一個交點在點(0,0)和(1,0)之間,所以當(dāng)x=1時,y<0,則a+b+c<0;由拋物線的頂點為D(-1,2)得a-b+c=2,由拋物線的對稱軸為直線x=-=-1得b=2a,所以c-a=2;根據(jù)二次函數(shù)的最大值問題,當(dāng)x=-1時,二次函數(shù)有最大值為2,即只有x=-1時,ax2+bx+c=2,所以說方程ax2+bx+c-2=0有兩個相等的實數(shù)根.
∵拋物線與x軸有兩個交點,
∴b24ac>0,所以①錯誤;
∵頂點為D(1,2),
∴拋物線的對稱軸為直線x=1,
∵拋物線與x軸的一個交點A在點(3,0)和(2,0)之間,
∴拋物線與x軸的另一個交點在點(0,0)和(1,0)之間,
∴當(dāng)x=1時,y<0,
∴a+b+c<0,所以②正確;
∵拋物線的頂點為D(1,2),
∴ab+c=2,
∵拋物線的對稱軸為直線x==1,
∴b=2a,
∴a2a+c=2,即ca=2,所以③正確;
∵當(dāng)x=1時,二次函數(shù)有最大值為2,
即只有x=1時,ax2+bx+c=2,
∴方程ax2+bx+c2=0有兩個相等的實數(shù)根,所以④正確.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣2x﹣8.
(1)用配方法把y=x2﹣2x﹣8化為y=(x﹣h)2+k形式;
(2)并指出:拋物線的頂點坐標(biāo)是 ,拋物線的對稱軸方程是 ,拋物線與x軸交點坐標(biāo)是 ,當(dāng)x 時,y隨x的增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別相交于,兩點,與雙曲線()相交于點,過作軸于點,,在點右側(cè)的雙曲線上取一點,作軸于,當(dāng)以點,,為頂點的三角形與相似,則點的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點,與軸交于點,且.
(1)求拋物線的解析式.
(2)若點是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點,使得的周長最。咳舸嬖,請求出點的坐標(biāo):若不存在,請說明理由.注:二次函數(shù)的對稱軸是直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-(2m-1)x+m2-m(m是常數(shù))
(1)當(dāng)m=2時,求二次函數(shù)圖象與x軸的交點;
(2)若A(n-3,n2+2),B(-n+1,n2+2)是該二次函數(shù)圖象上的兩個不同點,求m的值和二次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是500件,而銷售單價每上漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>30),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x(x>30) |
銷售量y(件) |
|
銷售玩具獲得利潤w(元) |
|
(2)在第(1)問的條件下,若商場獲得了8750元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?
(3)在第(1)問的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于32元,且商場要完成不少于400件的銷售任務(wù),求:商場銷售該品牌玩具獲得最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com