【題目】如圖,PA為⊙O的切線(xiàn),PB與⊙O交于BC兩點(diǎn),已知PA6,PB3,則PC_____

【答案】12

【解析】

連接AO并延長(zhǎng)交⊙OE,連接BE,AB,由切線(xiàn)的性質(zhì)得到∠EAP90°,根據(jù)圓周角定理得到∠ABE90°,根據(jù)余角的性質(zhì)和圓周角定理得到∠C=∠PAB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解:連接AO并延長(zhǎng)交⊙OE,連接BE,AB,

PA為⊙O的切線(xiàn),

∴∠EAP90°

∴∠EAB+PAB90°,

AE是⊙O的直徑,

∴∠ABE90°

∴∠E+EAB90°,

∴∠E=∠BAP

∵∠E=∠C

∴∠C=∠PAB

∵∠P=∠P,

∴△APB∽△CPA,

,

PC12

故答案為:12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四張撲克牌的牌面如圖1,將撲克牌洗勻后,如圖2背面朝上放置在桌面上,小明和小亮設(shè)計(jì)了A、B兩種游戲方案:

方案A:隨機(jī)抽一張撲克牌,牌面數(shù)字為5時(shí)小明獲勝;否則小亮獲勝.

方案B:隨機(jī)同時(shí)抽取兩張撲克牌,兩張牌面數(shù)字之和為偶數(shù)時(shí),小明獲勝;否則小亮獲勝.

請(qǐng)你幫小亮選擇其中一種方案,使他獲勝的可能性較大,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)一種商品的進(jìn)價(jià)為每件元,售價(jià)為每件.每天可以銷(xiāo)售件,為盡快減少庫(kù)存,商場(chǎng)決定降價(jià)促銷(xiāo).

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價(jià)降至每件元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若該商品每降價(jià)元,每天可多銷(xiāo)售,那么每天要想獲得最大利潤(rùn),每件售價(jià)應(yīng)多少元?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的頂點(diǎn)Cy軸正半軸上,CD平行于x軸,直線(xiàn)ACx軸于點(diǎn)E,BCAC,連接BE,反比例函數(shù)yx0)的圖象經(jīng)過(guò)點(diǎn)D,已知SBCE2,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為13的菱形ABCD沿AD方向平移至DCEF的位置,作EGAB,垂足為點(diǎn)G,GD的延長(zhǎng)線(xiàn)交EF于點(diǎn)H,已知BD24,則GH_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在線(xiàn)段MN上存在點(diǎn)PQ將線(xiàn)段MN分為相等的三部分,則稱(chēng)PQ為線(xiàn)段MN的三等分點(diǎn).

已知一次函數(shù)y=﹣x+3的圖象與xy軸分別交于點(diǎn)M、N,且AC為線(xiàn)段MN的三等分點(diǎn)(點(diǎn)A在點(diǎn)C的左邊).

1)直接寫(xiě)出點(diǎn)AC的坐標(biāo);

2)①二次函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)O、AC,試求此二次函數(shù)的解析式;

②過(guò)點(diǎn)A、C分別作AB、CD垂直x軸于B、D兩點(diǎn),在此拋物線(xiàn)OC之間取一點(diǎn)P(點(diǎn)P不與O、C重合)作PFx軸于點(diǎn)F,PFOC于點(diǎn)E,是否存在點(diǎn)P使得APBE?若存在,求出點(diǎn)P的坐標(biāo)?若不存在,試說(shuō)明理由;

3)在(2)的條件下,將OAB沿AC方向移動(dòng)到O'A'B'(點(diǎn)A'在線(xiàn)段AC上,且不與C重合),O'A'B'OCD重疊部分的面積為S,試求當(dāng)S時(shí)點(diǎn)A'的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九(1)、九(2)兩班的班長(zhǎng)交流了為四川安雅地震災(zāi)區(qū)捐款的情況:

)九(1)班班長(zhǎng)說(shuō):我們班捐款總數(shù)為1200元,我們班人數(shù)比你們班多8人.

)九(2)班班長(zhǎng)說(shuō):我們班捐款總數(shù)也為1200元,我們班人均捐款比你們班人均捐款多20%

請(qǐng)根據(jù)兩個(gè)班長(zhǎng)的對(duì)話(huà),求這兩個(gè)班級(jí)每班的人均捐款數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:

1)如圖1,在正方形ABCD中,E、F分別是BC、CD上的點(diǎn),且∠EAF=,請(qǐng)直接寫(xiě)出BEDFEF之間的數(shù)量關(guān)系;

2)如圖2,若把(1)問(wèn)中的條件變?yōu)?/span>四邊形ABCD中,AB=AD,∠B+D=,E、F分別是邊BC、CD上的點(diǎn),且,則(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由;

3)在(2)問(wèn)中,若將AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E、F分別運(yùn)動(dòng)到BCCD延長(zhǎng)線(xiàn)上時(shí),如圖3所示,其它條件不變,則(1)問(wèn)中的結(jié)論是否發(fā)生變化?若變化,請(qǐng)寫(xiě)出結(jié)論并證明,若不變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC為矩形,以點(diǎn)O為原點(diǎn)建立直角坐標(biāo)系,點(diǎn)C軸的正半軸上,點(diǎn)A軸的正半軸上,已知點(diǎn)B的坐標(biāo)為(2,4),反比例函數(shù)的圖像經(jīng)過(guò)AB的中點(diǎn)D,且與BC交于點(diǎn)E.

1)求的值和點(diǎn)E的坐標(biāo);

2)求直線(xiàn)DE的解析式;

3)點(diǎn)Q軸上一點(diǎn),點(diǎn)P為反比例函數(shù)圖像上一點(diǎn),是否存在點(diǎn)P、Q,使得以P、Q、D、E為頂點(diǎn)的四邊形為平行四邊形, 如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo); 如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案