【題目】如圖,平行四邊形ABCD的頂點(diǎn)C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點(diǎn)E,BC⊥AC,連接BE,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)D,已知S△BCE=2,則k的值是_____.
【答案】4.
【解析】
過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,設(shè)點(diǎn)D的坐標(biāo)為(m, )(m>0).由平行四邊形的性質(zhì)可得出BC=AD,再結(jié)合平行線的性質(zhì)以及角的計(jì)算得出∠ECO=∠ADC,通過(guò)解直角三角形用∠ADC的余弦、m和k表示出BC和CE,由S△BCE=2結(jié)合三角形的面積公式即可得出關(guān)于k的一元一次方程,解方程即可得出結(jié)論;
解:過(guò)點(diǎn)D作DF⊥x軸于點(diǎn)F,如圖所示.
∵四邊形ABCD是平行四邊形,
∴BC∥AD,BC=AD.
又∵BC⊥AC,
∴DA⊥AC,
∵CD平行于x軸,
∴∠ACD=∠CEO.
∵CO⊥OE,DA⊥AC,
∴∠ECO=∠ADC,
設(shè)點(diǎn)D的坐標(biāo)為(m,)(m>0),
則CD=m,OC=DF=,
在Rt△CAD中,CD=m,∠CAD=90°,AD=mcos∠ADC,
在Rt△COE中,OC=,∠COE=90°,CE==,
∴S△BCE=CEBC=·mcos∠ADC=k=2,
解得:k=4,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示:
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,在y軸左側(cè)將△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2;
(3)設(shè)P(x,y)為△ABC內(nèi)任意一點(diǎn),△A2B2C2內(nèi)的點(diǎn)P′是點(diǎn)P經(jīng)過(guò)上述兩次變換后的對(duì)應(yīng)點(diǎn),請(qǐng)直接寫出P′的坐標(biāo)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=(a﹣1)x2+3x﹣6的圖象與x軸的交點(diǎn)為A和B,若點(diǎn)B一定在坐標(biāo)原點(diǎn)和(1,0)之間,且B點(diǎn)不與原點(diǎn)和(1,0)重合,那么a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD=∠BCD=90°,ABCD=BCBD,BM∥CD交AD于點(diǎn)M.連接CM交DB于點(diǎn)N.
(1)求證:△ABD∽△BCD;
(2)若CD=6,AD=8,求MC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2.動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),沿A→C→B的方向向終點(diǎn)B運(yùn)動(dòng)(點(diǎn)P不與△ABC的頂點(diǎn)重合).點(diǎn)P關(guān)于點(diǎn)C的對(duì)稱點(diǎn)為點(diǎn)D,過(guò)點(diǎn)P作PQ⊥AB于點(diǎn)Q,以PD、PQ為邊作□PDEQ.設(shè)□PDEQ與△ABC.重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s)
(1)當(dāng)點(diǎn)P在AC上運(yùn)動(dòng)時(shí),用含t的代數(shù)式表示PD的長(zhǎng);
(2)當(dāng)點(diǎn)E落在△ABC的直角邊上時(shí),求t的值;
(3)當(dāng)□PDEQ與△ABC重疊部分的圖形是四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點(diǎn)P為弧AB上動(dòng)點(diǎn),點(diǎn)I為△PAB的內(nèi)心,當(dāng)點(diǎn)P從點(diǎn)A向點(diǎn)B運(yùn)動(dòng)時(shí),點(diǎn)I移動(dòng)的路徑長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=12cm,BC=24cm.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC向點(diǎn)C以2cm/s的速度移動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始沿邊CB向點(diǎn)B以4cm/s的速度移動(dòng).如果P,Q兩點(diǎn)同時(shí)出發(fā).
(1)經(jīng)過(guò)幾秒,△PCQ的面積為32cm2?
(2)若設(shè)△PCQ的面積為S,運(yùn)動(dòng)時(shí)間為t,請(qǐng)寫出當(dāng)t為何值時(shí),S最大,并求出最大值;
(3)當(dāng)t為何值時(shí),以P,C,Q為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com