如圖:菱形ABCD中,E是AB的中點(diǎn),且DE⊥AB,AB=a.求:
(1)∠ABC的度數(shù);
(2)對(duì)角線AC的長(zhǎng);
(3)菱形ABCD的面積.
(1)連接BD,
∵E是AB的中點(diǎn),且DE⊥AB,
∴AD=BD(等腰三角形三線合一逆定理)
又∵AD=AB,
∴△ABD是等邊三角形,
∴∠ABD=60°.
∴∠ABC=120°(菱形的對(duì)角線互相垂直平分,且每一條對(duì)角線平分一組對(duì)角).

(2)設(shè)AC與BD相交于O
∴OB=
a
2

∵四邊形ABCD是菱形,
∴BC=AB=a,
根據(jù)勾股定理可得OC=
a2-(
a
2
)
2
=
3
a
2
,
∴AC=
3
a


(3)菱形ABCD的面積=
3
a×a×
1
2
=
3
2
a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F.
求證:四邊形AEFG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)0,若AC=6cm,BD=8cm.則菱形ABCD的周長(zhǎng)為_(kāi)_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,菱形ABCD周長(zhǎng)為40,對(duì)角線AC=12,則菱形的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

過(guò)平行四邊形對(duì)角線的交點(diǎn),引互相垂直的兩條直線分別和四邊形的四條邊相交,判斷順次連接四個(gè)交點(diǎn)所組成的四邊形是什么四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,點(diǎn)E為垂足,連接DF,則∠CDF為( 。
A.80°B.70°C.65°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△OPQ中,∠POQ=90°,∠Q=30°,OP=4
3
.四邊形ABCD是菱形,點(diǎn)A在邊PQ上,B、C在邊QO上(B點(diǎn)在C點(diǎn)的左側(cè)),且∠ABC=60°.設(shè)BQ=x.
(1)試用含x的代數(shù)式表示菱形ABCD的邊長(zhǎng);
(2)當(dāng)點(diǎn)D在線段OP上時(shí),求x的值;
(3)設(shè)菱形ABCD與△OPQ重合部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式;
(4)連接PD、OD.對(duì)于不同的x值,請(qǐng)你比較線段OD與PD的大小關(guān)系,直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

菱形ABCD中,若周長(zhǎng)是20cm,對(duì)角線AC=6cm,則對(duì)角線BD=______cm.菱形面積為_(kāi)_____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知四邊形ABCD是菱形,∠A=72°,將它分割成如圖所示的四個(gè)等腰三角形,那么∠1+∠2+∠3=______度.

查看答案和解析>>

同步練習(xí)冊(cè)答案