【題目】已知:在四邊形ABCD中,E、F、G、H分別是BC、AD、BD、AC的中點.
①求證:EF與GH互相平分;
②當(dāng)四邊形ABCD的邊滿足____________條件時,EF⊥GH.(不必證明)
【答案】①證明見解析;②AB=CD
【解析】
①連接GE、GF、HF、EH,利用三角形中位線性質(zhì)得出EG=CD,FG=AB,FH=CD,EH=AB,由此證明出EG=FH,FG=EH,從而得出四邊形FGEH為平行四邊形,據(jù)此即可證明結(jié)論;
②根據(jù)菱形的性質(zhì)可知對角線互相垂直,由此結(jié)合三角形中位線性質(zhì)進一步求解即可.
①如圖,連接GE、GF、HF、EH,
∵E、G分別為BC、BD中點,
∴EG=CD,
同理可得:FG=AB,FH=CD,EH=AB,
∴EG=FH,FG=EH,
∴四邊形FGEH為平行四邊形,
∴EF與GH互相平分;
②當(dāng)EF⊥GH時,平行四邊形FGEH為菱形,
此時GF=GE=FH=EH,
∵EG=CD,FG=AB,FH=CD,EH=AB,
∴AB=CD,
∴當(dāng)四邊形ABCD的邊滿足AB=CD時,EF⊥GH,
故答案為:AB=CD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點的坐標(biāo)為(,1),下列結(jié)論:①c>0;②b2﹣4ac>0;③a+b=0;④4ac﹣b2>4a,其中錯誤的是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,明亮同學(xué)在點A處測得大樹頂端C的仰角為36°,斜坡AB的坡角為30°,沿在同一剖面的斜坡AB行走16米至坡頂B處,然后再沿水平方向行走6.4米至大樹腳底點D處,那么大樹CD的高度約為多少米?)(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,≈1.7).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校一幢教學(xué)大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:△AEF≌△DEC;
(2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭州某零件廠剛接到要鑄造5000件鐵質(zhì)工件的訂單,下面給出了這種工件的三視圖.已知鑄造這批工件的原料是生鐵,待工件鑄成后還要在表面涂一層防銹漆,那么完成這批工件需要原料生鐵多少噸?涂完這批工件要消耗多少千克的防銹漆?(鐵的密度為7.8g/cm3 ,1千克防銹漆可以涂4m2的鐵器面,三視圖單位為cm)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=-分別與x軸、y軸交于點A、B,且點A的坐標(biāo)為(8,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)求點D的坐標(biāo);
(3)點M是線段AB上的一個動點(點A、B除外),試探索在x上方是否存在另一個點N,使得以O、B、M、N為頂點的四邊形是菱形?若不存在,請說明理由;若存在,請求出點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于河南省鄭州市的炎黃二帝巨型塑像,是為代表中華民族之創(chuàng)始、之和諧、之統(tǒng)一.塑像由山體CD和頭像AD兩部分組成.某數(shù)學(xué)興趣小組在塑像前50米處的B處測得山體D處的仰角為45°,頭像A處的仰角為70.5°,求頭像AD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市對位于筆直公路上的兩個小區(qū)A、B的供水路線進行優(yōu)化改造,測得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)B到供水站M的距離為300米,
(1)求供水站M到公路AB的垂直距離MD的長度.
(2)求小區(qū)A到供水站M的距離.(結(jié)果可保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com