解:(1)根據(jù)絕對(duì)值不相等的異號(hào)兩數(shù)相加的加法法則a+b<0,
根據(jù)有理數(shù)減法法則a-b>0,
根據(jù)有理數(shù)乘法法則ab<0,
根據(jù)有理數(shù)除法法則
<0;
(2)解:原式=25+9-4+4-1
=34-1
=33;
(3)5(2x-7y)-3(4x-10y)
=10x-35y-12x+30y
=-2x-5y;
(4)原式=-2.4ab
2+3.5a
2b-4.6a
2b+
ab
2=(-2.4+
)ab
2+(3.5-4.6)a
2b
=1.1ab
2-1.1a
2b
分析:根據(jù)數(shù)軸上數(shù)的特點(diǎn)、乘方得運(yùn)算法則及合并同類項(xiàng)法則來計(jì)算.注意去括號(hào)時(shí),括號(hào)前如果是負(fù)號(hào),去括號(hào)時(shí),括號(hào)里的每一項(xiàng)都要變號(hào);合并同類項(xiàng)時(shí)只把系數(shù)相加減,字母與字母的指數(shù)不變.
點(diǎn)評(píng):本題綜合性很強(qiáng),涉及到以下內(nèi)容:
(1)絕對(duì)值的性質(zhì):一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0.
(2)絕對(duì)值不相等的異號(hào)兩數(shù)相加的加法法則:取絕度值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值.
(3)有理數(shù)減法法則:減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù).
(4)有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)的正,異號(hào)的負(fù),并把絕對(duì)值相乘.
(5)有理數(shù)除法法則:兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.
(6)同類項(xiàng)概念:所含字母相同,相同字母的指數(shù)也相同的單項(xiàng)式較同類項(xiàng).
(7)合并同類項(xiàng)法則:字母及字母指數(shù)不變,把系數(shù)相加減.