【題目】某校為了了解學生大課間活動的跳繩情況,隨機抽取了50名學生每分鐘跳繩的次數(shù)進行統(tǒng)計,把統(tǒng)計結(jié)果繪制成如表和直方圖.
次數(shù) | 70≤x<90 | 90≤x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人數(shù) | 8 | 23 | 16 | 2 | 1 |
根據(jù)所給信息,回答下列問題:
(1)本次調(diào)查的樣本容量是;
(2)本次調(diào)查中每分鐘跳繩次數(shù)達到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補全直方圖;
(4)如果跳繩次數(shù)達到130次以上的3人中有2名女生和一名男生,學校從這3人中抽取2名學生進行經(jīng)驗交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).
【答案】
(1)50
(2)19
(3)解:根據(jù)圖表所給出的數(shù)據(jù)補圖如下:
(4)解:根據(jù)題意畫樹狀圖如下:
共有6種情況,恰好抽中一男一女的有4種情況,
則恰好抽中一男一女的概率是 =
【解析】解:(1.)本次調(diào)查的樣本容量是:8+23+16+2+1=50; 故答案為:50;
(2.)本次調(diào)查中每分鐘跳繩次數(shù)達到110次以上(含110次)的共有的共有人數(shù)是:
16+2+1=19(人);
故答案為:19;
(1)根據(jù)圖表給出的數(shù)據(jù)可直接得出本次調(diào)查的樣本容量;(2)把調(diào)查中每分鐘跳繩次數(shù)達到110次以上(含110次)的人數(shù)加起來即可;(3)根據(jù)圖表給出的數(shù)據(jù)可直接補全直方圖;(4)根據(jù)題意畫出樹狀圖,得出抽中一男一女的情況,再根據(jù)概率公式,即可得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40天
(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時 天
(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務(wù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結(jié)論中:
①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S=ACBD.
正確的是 (填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=-x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)當t為何值時△COM≌△AOB,并求此時M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】武警戰(zhàn)士乘一沖鋒舟從地逆流而上,前往地營救受困群眾,途經(jīng)地時,由所攜帶的救生艇將地受困群眾運回地,沖鋒舟繼續(xù)前進,到地接到群眾后立刻返回地,途中曾與救生艇相遇.沖鋒舟和救生艇距地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數(shù)圖象如圖所示.假設(shè)營救群眾的時間忽略不計,水流速度和沖鋒舟在靜水中的速度不變.
(1)請直接寫出沖鋒舟從地到地所用的時間.
(2)求水流的速度.
(3)沖鋒舟將地群眾安全送到地后,又立即去接應(yīng)救生艇.已知救生艇與地的距離(千米)和沖鋒舟出發(fā)后所用時間(分)之間的函數(shù)關(guān)系式為,假設(shè)群眾上下船的時間不計,求沖鋒舟在距離地多遠處與救生艇第二次相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間的函數(shù)關(guān)系的圖象如圖. 根據(jù)圖象解決下列問題:
(1) 誰先出發(fā)?先出發(fā)多少時間?誰先到達終點?先到多少時間?
(2) 分別求出甲、乙兩人的行駛速度;
(3) 在什么時間段內(nèi),兩人均行駛在途中(不包括起點和終點)?在這一時間段內(nèi),請你根據(jù)下列情形,分別列出關(guān)于行駛時間x的方程或不等式(不化簡,也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線l1與x軸交于點A,B,與y軸交于點C,l1的解析式為y= x2﹣2,若將拋物線l1平移,使平移后的拋物線l2經(jīng)過點A,對稱軸為直線x=﹣6,拋物線l2與x軸的另一個交點是E,頂點是D,連結(jié)OD,AD,ED.
(1)求拋物線l2的解析式;
(2)求證:△ADE∽△DOE;
(3)半徑為1的⊙P的圓心P沿著直線x=﹣6從點D運動到F(﹣6,0),運動速度為1單位/秒,運動時間為t秒,⊙P繞著點C順時針旋轉(zhuǎn)90°得⊙P1 , 隨著⊙P的運動,求P1的運動路徑長以及當⊙P1與y軸相切的時候t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com