如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)

(1)若△CEF與△ABC相似.

①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為  ;

②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為 1.8或2.5 ;

(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說明理由.

考點(diǎn):

相似三角形的判定與性質(zhì);翻折變換(折疊問題).

分析:

(1)若△CEF與△ABC相似.

①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形;

②當(dāng)AC=3,BC=4時(shí),分兩種情況:

(I)若CE:CF=3:4,如答圖2所示,此時(shí)EF∥AB,CD為AB邊上的高;

(II)若CF:CE=3:4,如答圖3所示.由相似三角形角之間的關(guān)系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點(diǎn)為AB的中點(diǎn);

(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個(gè)三角形相似.

解答:

解:(1)若△CEF與△ABC相似.

①當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如答圖1所示.

此時(shí)D為AB邊中點(diǎn),AD=AC=

②當(dāng)AC=3,BC=4時(shí),有兩種情況:

(I)若CE:CF=3:4,如答圖2所示.

∵CE:CF=AC:BC,∴EF∥BC.

由折疊性質(zhì)可知,CD⊥EF,∴CD⊥AB,即此時(shí)CD為AB邊上的高.

在Rt△ABC中,AC=3,BC=4,∴BC=5,∴cosA=.

AD=AC•cosA=3×=1.8;

(II)若CF:CE=3:4,如答圖3所示.

∵△CEF∽△CAB,∴∠CEF=∠B.

由折疊性質(zhì)可知,∠CEF+∠ECD=90°,

又∵∠A+∠B=90°,

∴∠A=∠ECD,∴AD=CD.

同理可得:∠B=∠FCD,CD=BD,

∴此時(shí)AD=AB=×5=2.5.

綜上所述,當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為1.8或2.5.

(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似.理由如下:

如答圖3所示,連接CD,與EF交于點(diǎn)Q.

∵CD是Rt△ABC的中線,∴CD=DB=AB,∴∠DCB=∠B.

由折疊性質(zhì)可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,

∵∠B+∠A=90°,∴∠CFE=∠A,

又∵∠C=∠C,∴△CEF∽△CBA.

點(diǎn)評(píng):

本題是幾何綜合題,考查了幾何圖形折疊問題和相似三角形的判定與性質(zhì).第(1)②問需要分兩種情況分別計(jì)算,此處容易漏解,需要引起注意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案