如圖,在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn),如果點(diǎn)M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請你判斷△OMN的形狀,并證明你的結(jié)論.

【答案】分析:連OA,由AC=AB,∠BAC=90°,根據(jù)等腰直角三角形的性質(zhì)得OA=OB,OA平分∠BAC,∠B=45°,并且AO⊥BC,則∠NAO=∠B=45°,根據(jù)全等三角形的判定得到△NAO≌△MBO,則 ON=OM,∠AON=∠BOM,又∠BOM+∠AOM=90°,得到∠AON+∠AOM=90°,于是可判斷△OMN是等腰直角三角形.
解答:證明:△OMN為等腰直角三角形.理由如下:
連接OA,如圖,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,
,
∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中點(diǎn),
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì):有兩組邊對應(yīng)相等,并且它們的夾角也相等的兩三角形全等;全等三角形的對應(yīng)邊相等、對應(yīng)角相等.也考查了等腰直角三角形的性質(zhì)與判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點(diǎn)D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案