【題目】菱形ABCD的對角線AC、BD之比為3:4,其周長為40cm,則菱形ABCD的面積為cm2

【答案】96
【解析】解:如圖所示,
∵菱形ABCD的周長為40cm,
∴AB=10cm.
∵角線AC、BD之比為3:4,
∴設(shè)OA=3x,則OB=4x.
∵OA2+OB2=AB2 , 即(3x)2+(4x)2=102 , 解得x=2,
∴OA=6,OB=8,
∴AC=2OA=12,BD=2OB=16,
∴S菱形ABCD= ×12×16=96cm2
所以答案是:96.

【考點(diǎn)精析】通過靈活運(yùn)用菱形的性質(zhì),掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形既是軸對稱圖形,又是中心對稱圖形的是( 。

A. 等邊三角形B. 平行四邊形C. 正五邊形D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=32°,以A為圓心,任意長為半徑畫弧分別交AB , AC于點(diǎn)MN , 再分別以M , N為圓心,大于 MN的長為半徑畫弧,兩弧交于點(diǎn)P , 連接AP并延長交BC于點(diǎn)D , 則下列說法:
AD是∠BAC的平分線;
CD是△ADC的高;
③點(diǎn)DAB的垂直平分線上;
④∠ADC=61°.
其中正確的有( 。
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y(1m)x的圖象上有兩點(diǎn)A(x1,y1),B(x2,y2),且當(dāng)x1x2時,y1y2,則m的取值范圍是( )

A. m0 B. m0 C. m1 D. m1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m是方程x22x1=0的一個根,則代數(shù)式2m24m+2019的值為( )

A. 2022B. 2021C. 2020D. 2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:
某小區(qū)為改善居住環(huán)境,計劃在小區(qū)內(nèi)種植甲、乙兩種花木共6600棵,若甲種花木的數(shù)量是乙種花木數(shù)量的2倍少300棵.甲、乙兩種花木的數(shù)量分別是多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3.14159的近似值(精確到百分位)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD中,AD∥BC,∠C=90°,P是CD上一點(diǎn),BH⊥AP于H,BH=BC=CD

(1)求證:∠ABP=45°;
(2)若BC=20,PC=12,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知sinβ=0.8290,則β的度數(shù)約為.

查看答案和解析>>

同步練習(xí)冊答案