【題目】閱讀下列材料,解決后面兩個問題:
一個能被17整除的自然數(shù)我們稱為“靈動數(shù)”.“靈動數(shù)”的特征是:若把一個整數(shù)的個位數(shù)字截去,再從余下的數(shù)中,減去個位數(shù)的5倍,如果差是17的整倍數(shù)(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾、倍大、相減、驗差”的過程,直到能清楚判斷為止.
例如:判斷1675282能不能被17整除. 167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)…6×5=30,現(xiàn)在個位×5=30>剩下的13,就用大數(shù)減去小數(shù),30﹣13=17,17÷17=1;所以1675282能被17整除.
(1)請用上述方法判斷7242和2098754 是否是“靈動數(shù)”,并說明理由;
(2)已知一個四位整數(shù)可表示為,其中個位上的數(shù)字為n,十位上的數(shù)字為m,0≤m≤9,0≤n≤9且m,n為整數(shù).若這個數(shù)能被51整除,請求出這個數(shù).
【答案】(1)不是,理由見解析;(2)這個數(shù)是2703或2754
【解析】(1)根據(jù)“靈動數(shù)”的特征,列出算式求解即可;
(2)先求出51×52<2700,51×55>2800,根據(jù)整數(shù)的定義求出51×53,51×54的積,從而求解.
(1)724﹣2×5=714,71﹣4×5=51,51÷17=3,
所以7242能被17整除,是“靈動數(shù)”;
209875﹣4×5=209855,20985﹣5×5=20960,2096﹣0×5=2096,209﹣6×5=179,179÷17=10…9,
所以209875不能被17整除,不是“靈動數(shù)”;
(2)∵51×52<2700,51×55>2800,
51×53=2703,51×54=2754,
∴這個數(shù)是2703或2754.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙二人從學校出發(fā)去科技館,甲步行一段時間后,乙騎自行車沿相同路線行進,兩人均勻速前行,他們的路程差S(米)與甲出發(fā)時間t(分)之間的函數(shù)關系如圖所示.下列說法:①乙先到達科技館;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中,正確的是 ______(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知n邊形的內角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形中,10厘米,6厘米,點沿邊從點開始向點以2厘米/秒的速度移動;點沿邊從點開始向點以1厘米/秒的速度移動.如果同時出發(fā),用 (秒)表示移動的時間.那么:
(1)如圖1,用含的代數(shù)式表示和,若線段,求的值.
(2)如圖2,在不考慮點的情況下,連接,用含t的代數(shù)式表示△QAB的面積.
(3)圖2中,若△QAB的面積等于長方形的面積的,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將線段AB繞點A逆時針旋轉α度角得到線段AC,將線段AB繞點B逆時針旋轉α度角得到線段BD(0°<α<180°),連結BC、AD.當α=_______度時,四邊形ACBD是菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設a、b、c是△ABC的三條邊,關于x的方程x2+2x+2c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為0.
(1)求證:△ABC為等邊三角形;
(2)若a,b為方程x2+mx-3m=0的兩根,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com