【題目】問題一:如圖1,已知A,C兩點(diǎn)之間的距離為16 cm,甲,乙兩點(diǎn)分別從相距3cm的A,B兩點(diǎn)同時(shí)出發(fā)到C點(diǎn),若甲的速度為8 cm/s,乙的速度為6 cm/s,設(shè)乙運(yùn)動(dòng)時(shí)間為x(s), 甲乙兩點(diǎn)之間距離為y(cm).
(1)當(dāng)甲追上乙時(shí),x = .
(2)請(qǐng)用含x的代數(shù)式表示y.
當(dāng)甲追上乙前,y= ;
當(dāng)甲追上乙后,甲到達(dá)C之前,y= ;
當(dāng)甲到達(dá)C之后,乙到達(dá)C之前,y= .
問題二:如圖2,若將上述線段AC彎曲后視作鐘表外圍的一部分,線段AB正好對(duì)應(yīng)鐘表上的弧AB(1小時(shí)的間隔),易知∠AOB=30°.
(1)分針OD指向圓周上的點(diǎn)的速度為每分鐘轉(zhuǎn)動(dòng) cm;時(shí)針OE指向圓周上的點(diǎn)的速度為每分鐘轉(zhuǎn)動(dòng) cm.
(2)若從4:00起計(jì)時(shí),求幾分鐘后分針與時(shí)針第一次重合.
【答案】問題一、(1);(2)3-2x;2x-3;13-6x;問題一、(1);;.
【解析】
問題一根據(jù)等量關(guān)系,路程=速度時(shí)間,路程差=路程1-路程2,即可列出方程求解。
問題一:(1)當(dāng)甲追上乙時(shí),甲的路程=乙的路程+3
所以,
故答案為.
(2) 當(dāng)甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;
所以,.
當(dāng)甲追上乙后,甲到達(dá)C之前,路程差=甲所行的路程-3-乙所行的路程;
所以,.
當(dāng)甲到達(dá)C之后,乙到達(dá)C之前,路程差=總路程-3-乙所行的路程;
所以,.
問題二:(1)由題意AB為鐘表外圍的一部分,且∠AOB=30°
可知,鐘表外圍的長(zhǎng)度為
分針OD的速度為
時(shí)針OE的速度為
故OD每分鐘轉(zhuǎn)動(dòng),OE每分鐘轉(zhuǎn)動(dòng).
(2)4點(diǎn)時(shí)時(shí)針與分針的路程差為
設(shè)分鐘后分針與時(shí)針第一次重合。
由題意得,
解得,.
即分鐘后分針與時(shí)針第一次重合。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生產(chǎn)小組有名工人,調(diào)查每個(gè)工人的日均零件生產(chǎn)能力,獲得如表數(shù)據(jù):
日均生產(chǎn)零件的個(gè)數(shù)(個(gè)) | ||||||
工人人數(shù)(人) |
求這名工人日均生產(chǎn)零件的眾數(shù)、中位數(shù)、平均數(shù).
為提高工作效率和工人的工作積極性,生產(chǎn)管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施,如果你是管理者,你將如何確定這個(gè)定額?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究規(guī)律
在數(shù)軸上,把表示數(shù)1的點(diǎn)稱為基準(zhǔn)點(diǎn),記作點(diǎn)O.對(duì)于兩個(gè)不同點(diǎn)M和N,若點(diǎn)M和點(diǎn)N到點(diǎn)O的距離相等,則稱點(diǎn)M與點(diǎn)N互為基準(zhǔn)變換點(diǎn).例如:圖1中MO=NO=2,則點(diǎn)M和點(diǎn)N互為基準(zhǔn)變換點(diǎn).
發(fā)現(xiàn):(1)已知點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換點(diǎn).
①若a=0,則b= ;若a=4,則b= ;
②用含a的式子表示b,則b= ;
應(yīng)用:(2)對(duì)點(diǎn)A進(jìn)行如下操作:先把點(diǎn)A表示的數(shù)乘以,再把所得數(shù)表示的點(diǎn)沿著數(shù)軸向左移動(dòng)3個(gè)單位長(zhǎng)度得到點(diǎn)B.若點(diǎn)A與點(diǎn)B互為基準(zhǔn)變換,則點(diǎn)A表示的數(shù)是多少?
探究:(3)點(diǎn)P是數(shù)軸上任意一點(diǎn),對(duì)應(yīng)的數(shù)為m,對(duì)P點(diǎn)做如下操作:P點(diǎn)沿?cái)?shù)軸向右移動(dòng)k(k>0)個(gè)單位長(zhǎng)度得到P1,P2為P1的基準(zhǔn)變換點(diǎn),點(diǎn)P2沿?cái)?shù)軸向右移動(dòng)k個(gè)單位長(zhǎng)度得到點(diǎn)P3,點(diǎn)P4為P3的基準(zhǔn)變換點(diǎn),“…依次順序不斷的重復(fù),得到P6…,求出數(shù)軸上點(diǎn)P2018表示的數(shù)是多少?(用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.
(3)小明說:他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀.拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10cm.橋洞與水面的最大距離是5m.橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).求:
(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,B、C、D三點(diǎn)在同一條直線上,AC=CD,∠B=∠E=90°,AC⊥CD,則不正確的結(jié)論是( 。
A. ∠A與∠D互為余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長(zhǎng)線于點(diǎn)F,若∠F=30°,DE=1,試求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的二次函數(shù),當(dāng)x=2時(shí),y=﹣4,當(dāng)y=4時(shí),x恰為方程2x2﹣x﹣8=0的根.
(1)解方程 2x2﹣x﹣8=0
(2)求這個(gè)二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有點(diǎn)a,b,c三點(diǎn)
(1)用“<”將a,b,c連接起來.
(2)b﹣a 1(填“<”“>”,“=”)
(3)化簡(jiǎn)|c﹣b|﹣|c﹣a+1|+|a﹣1|
(4)用含a,b的式子表示下列的最小值:
①|(zhì)x﹣a|+|x﹣b|的最小值為 ;
②|x﹣a|+|x﹣b|+|x+1|的最小值為 ;
③|x﹣a|+|x﹣b|+|x﹣c|的最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com