【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′

(1)在給定方格紙中畫出平移后的△A′B′C′

(2)畫出BC邊上的高線AE;

(3)利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:△A′B′C′的面積為______

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)8.

【解析】

(1)連接BB′,過(guò)A、C分別做BB′的平行線,并且在平行線上截取AA′=CC′=BB′,順次連接平移后各點(diǎn),得到的三角形即為平移后的三角形;

(2)將三角板的一條直角邊與BC所在直線重合,然后移動(dòng)三角板,當(dāng)另一條直角邊過(guò)點(diǎn)A時(shí),連接點(diǎn)A與直角頂點(diǎn)即可得高AE;

(3)根據(jù)三角形面積公式即可求出A′B′C′的面積.

(1)如圖所示:A′B′C′即為所求;

(2)如圖所示:AE即為BC邊上的高;

(3)SA′B′C′=4×4÷2=16÷2=8,

A′B′C′的面積為8,

故答案為:8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y= 的圖象在第二、四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點(diǎn)B,與直線y=kx+b交于點(diǎn)A,直線x=3與x軸交于點(diǎn)C,與直線y=kx+b交于點(diǎn)D.點(diǎn)A,D都在第一象限,直線y=kx+b與x軸交于點(diǎn)E,與y軸交于點(diǎn)F

(1)當(dāng) = 且△OFE的面積等于 時(shí),求這個(gè)一次函數(shù)的解析式;
(2)在(1)的條件下,根據(jù)函數(shù)圖象,試求不等式 >kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(-2.3)、B(-6,0)、C(-1,0)

(1) ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫出圖形,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′ 的坐標(biāo)________;

(2)ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,

直接寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)___________;

(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)A、B,⊙O的半徑為2 個(gè)單位長(zhǎng)度,點(diǎn)P為直線y=﹣x+8上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的切線PC、PD,切點(diǎn)分別為C、D,且PC⊥PD.
(1)試說(shuō)明四邊形OCPD的形狀(要有證明過(guò)程);
(2)求點(diǎn)P的坐標(biāo)
(3)若直線y=﹣x+8沿x軸向左平移得到一條新的直線y1=﹣x+b,此直線將⊙O的圓周分得兩段弧長(zhǎng)之比為1:3,請(qǐng)直接寫出b的值;
(4)若將⊙O沿x軸向右平移(圓心O始終保持在x軸上),試寫出當(dāng)⊙O與直線y=﹣x+8有交點(diǎn)時(shí)圓心O的橫坐標(biāo)m的取值范圍.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形一腰長(zhǎng)為5,一邊上的高為3,則底邊長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)M為邊AD的中點(diǎn),過(guò)點(diǎn)CAB的垂線交AB于點(diǎn)E,連接ME,已知AM2AE4,∠BCE30°.

1)求平行四邊形ABCD的面積S;

2)求證:∠EMC2AEM

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:

(1)畫線段AD∥BC且使AD=BC,連接CD;

(2)線段AC的長(zhǎng)為___,CD的長(zhǎng)為___AD的長(zhǎng)為___.

(3)試判斷△ACD的形狀,并求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校實(shí)施新課程改革以來(lái),學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對(duì)該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分為四類(A.特別好,B.好,C.一般,D.較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)本次調(diào)查中,王老師一共調(diào)查了名學(xué)生;
(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;
(3)假定全校各班實(shí)施新課程改革效果一樣,全校共有學(xué)生2 400人,請(qǐng)估計(jì)該校新課程改革效果達(dá)到A類的有多少學(xué)生;
(4)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請(qǐng)用列表或畫樹(shù)狀圖的方法求出恰好選中一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案