【題目】如圖,已知A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,AD=6cm,動(dòng)點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B停止時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng),問:
(1)P、Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),四邊形PBCQ的面積是33?
(2)P、Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),點(diǎn)P與Q之間的距離是10cm?
【答案】(1) 5秒;(2) 4.8秒或1.6秒.
【解析】
(1)根據(jù)矩形和正方形的性質(zhì),利用梯形面積的求算方法,找出等量關(guān)系列出方程求解即可;
(2)作PE⊥CD,垂足為E,設(shè)運(yùn)動(dòng)時(shí)間為t秒,用t表示線段長(zhǎng),用勾股定理列方程求解.
(1)依題意得
AP=3t,
BP=AB-AP=16-3t,
CQ=2t,
DQ=DC-CQ=16-2t,
故S梯形PBCQ﹦﹙CQ+PB﹚BC.
又∵S梯形PBCQ﹦33,
∴﹙2t+16-3t﹚×6=33,
解得t=5.
答:P、Q兩點(diǎn)出發(fā)后5秒時(shí),四邊形PBCQ的面積為33cm2.
(2)過點(diǎn)P做PE⊥CD交CD于E.
QE=DQ-AP=16-5t,
在Rt△PQE中,
PE2+QE2=PQ2,
可得:(16-5t)2+62=102,
解得t1=4.8,t2=1.6.
故P、Q兩點(diǎn)從開始出發(fā)4.8秒或1.6秒時(shí),點(diǎn)P與Q之間的距離是10cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線”.
①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠ABC,射線BC上一點(diǎn)D.
(1)求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.
(2)在(1)的條件下,若DP⊥AB,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形AOBC中,AC∥OB,頂點(diǎn)O是原點(diǎn),頂點(diǎn)A的坐標(biāo)為(0,8),AC=24cm,OB=26cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以3m/s的速度向點(diǎn)O運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng);從運(yùn)動(dòng)開始,設(shè)P(Q)點(diǎn)運(yùn)動(dòng)的時(shí)間為ts.
(1)求直線BC的函數(shù)解析式;
(2)當(dāng)t為何值時(shí),四邊形AOQP是矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)某興趣小組開展課外活動(dòng).如圖,A,B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長(zhǎng)為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子仍落在其身后,并測(cè)得這個(gè)影長(zhǎng)為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時(shí)他(GH)在同一燈光下的影長(zhǎng)為BH(點(diǎn)C,E,G在一條直線上).
(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長(zhǎng)FM(不寫畫法);
(2)求小明原來的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D為△ABC內(nèi)一點(diǎn), ∠BAD=15°,AD=AC,CE⊥AD于E,且CE=5.
(1)求BC的長(zhǎng);
(2)求證:BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)經(jīng)過ABCD的頂點(diǎn)B、D,點(diǎn)A的坐標(biāo)為(0,﹣1),AB∥x軸,CD經(jīng)過點(diǎn)(0,2),ABCD的面積是18,則點(diǎn)D的坐標(biāo)是( 。
A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象上分別與x軸,y軸交于A、B兩點(diǎn),正比例函數(shù)的圖象與交于點(diǎn).
(1)求m的值;
(2)求直線的解析式;
(3)-次函數(shù)的圖象為直線,且,,可以圍成三角形,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com