【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)PAB延長(zhǎng)線上一點(diǎn),連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCA,OA2,求CP的長(zhǎng);

(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)NMNMC9,求BM的值.

【答案】(1) ①見解析;②2;(2)3.

【解析】

(1)①由等腰三角形的性質(zhì)和圓周角定理可得OCCP,即可得出結(jié)論;

根據(jù)圓周角定理及三角形內(nèi)角和定理得出∠P=30°,根據(jù)30°角所對(duì)直角邊等于斜邊的一半即可得出結(jié)論;

(2)根據(jù)圓周角定理可證AMC∽△NMA,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可得出結(jié)論

1)①∵OA=OC,∴∠A=∠ACO

∵∠PCB=∠A,∴∠ACO=∠PCB

AB是⊙O的直徑,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OCCP

OC是⊙O的半徑,∴PC是⊙O的切線.

②∵CP=CA,∴∠P=∠A,∴∠COB=2A=2P

∵∠OCP=90°,∴∠P=30°.

OC=OA=2,∴OP=2OC=4,∴PC==;

2)連接MA、MB

∵點(diǎn)M是弧AB的中點(diǎn),∴AM=BM,∴∠ACM=∠BAM

∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MCMN

MCMN=9,∴AM=3,∴BM=AM=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,P是第一象限角平分線上的一點(diǎn),且P點(diǎn)的橫坐標(biāo)為3.把一塊三角板的直角頂點(diǎn)固定在點(diǎn)P處,將此三角板繞點(diǎn)P旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中設(shè)一直角邊與x軸交于點(diǎn)E,另一直角邊與y軸交于點(diǎn)F,若POE為等腰三角形,則點(diǎn)F的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD,AB=AD,∠BAD=90°,∠BCD=30°,∠BAD的平分線AE與邊DC相交于點(diǎn)E,連接BEAC,AC=7,△BCE的周長(zhǎng)為16,則線段BC的長(zhǎng)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家步行到校車站臺(tái),等候坐校車去學(xué)校,圖中的折線表示這一過(guò)程中小明的路程S(km)與所花時(shí)間t(min)間的函數(shù)關(guān)系;下列說(shuō)法:①他步行了1km到校車站臺(tái);②他步行的速度是100m/min;③他在校車站臺(tái)等了6min;④校車運(yùn)行的速度是200m/min;其中正確的個(gè)數(shù)是( )個(gè).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn)、.點(diǎn)的坐標(biāo)是,拋物線經(jīng)過(guò)兩點(diǎn)且交軸于點(diǎn).點(diǎn)軸上一點(diǎn),過(guò)點(diǎn)軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),連結(jié),設(shè)點(diǎn)的橫坐標(biāo)為.

1)求點(diǎn)的坐標(biāo).

2)求拋物線的表達(dá)式.

3)當(dāng)以、、、為頂點(diǎn)的四邊形是平行四邊形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AEDC的交點(diǎn)為O,連接DE

(1)求證:ADE≌△CED

(2)求證:DEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,直線與圓有三種位置關(guān)系:相交、相切、相離.類比直線與圓的位置關(guān)系,給出如下定義:與坐標(biāo)軸不平行的直線與拋物線有兩個(gè)公共點(diǎn)叫做直線與拋物線相交;直線與拋物線有唯一的公共點(diǎn)叫做直線與拋物線相切,這個(gè)公共點(diǎn)叫做切點(diǎn);直線與拋物線沒(méi)有公共點(diǎn)叫做直線與拋物線相離.

(1)記一次函數(shù)的圖像為直線,二次函數(shù)的圖像為拋物線,若直線與拋物線相交,求的取值范圍;

(2)若二次函數(shù)的圖像與軸交于點(diǎn),與軸交于點(diǎn),直線lCB平行,并且與該二次函數(shù)的圖像相切,求切點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的內(nèi)接三角形,AB直徑,,,點(diǎn)D為線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)DAB的垂線交于點(diǎn)E,交AB于點(diǎn)F,連結(jié)BD,CF,并延長(zhǎng)BD于點(diǎn)H

的半徑;

當(dāng)DE經(jīng)過(guò)圓心O時(shí),求AD的長(zhǎng);

求證:

的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案