【題目】如圖,已知在矩形中,,是線段邊上的任意一點(diǎn)(不含端點(diǎn)、),連接,過點(diǎn)

在線段上是否存在不同于的點(diǎn),使得?若存在,求線段之間的數(shù)量關(guān)系;若不存在,請說明理由;

當(dāng)點(diǎn)上運(yùn)動時,對應(yīng)的點(diǎn)也隨之在上運(yùn)動,求的取值范圍.

【答案】(1)當(dāng)的中點(diǎn)時,滿足條件的點(diǎn)不存在.當(dāng)不是的中點(diǎn)時,總存在這樣的點(diǎn)滿足條件,此時;(2)的取值范圍是

【解析】

(1)假設(shè)存在符合條件的Q點(diǎn),由于PE⊥PC,且四邊形ABCD是矩形,易證得△APE∽△DCP,可得APPD=AECD,同理可通過△AQE∽△DCQ得到AQQD=AEDC,則APPD=AQQD,分別用PD、QD表示出AP、AQ,將所得等式進(jìn)行適當(dāng)變形即可求得AP、AQ的數(shù)量關(guān)系.(2)由于BE的最大值為AB的長即2,因此只需求得BE的最小值即可;設(shè)AP=x,AE=y,在(1)題中已經(jīng)證得APPD=AECD,用x、y表示出其中的線段,即可得到關(guān)于x、y的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得y的最大值,由此可求得BE的最小值,即可得到BE的取值范圍.

假設(shè)存在這樣的點(diǎn)

,

,

,

,

,

,

,

同理可得;

,即,

,

,

;

,

,即不能是的中點(diǎn),

當(dāng)的中點(diǎn)時,滿足條件的點(diǎn)不存在.

當(dāng)不是的中點(diǎn)時,總存在這樣的點(diǎn)滿足條件,此時

設(shè),由可得,

當(dāng)(在范圍內(nèi))時,;

而此時最小為

上運(yùn)動,且,

的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖像,1是產(chǎn)品銷售量y()與時間t()的函數(shù)關(guān)系,2是一件產(chǎn)品的銷售利潤z()與時間t()的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×每件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )。

A. 24天的銷售量為200B. 10天銷售一件產(chǎn)品的利潤是15

C. 12天與第30天這兩天的日銷售利潤相等D. 30天的日銷售利潤是750

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1l2l3l4,相鄰兩條平行線間的距離均為h,矩形ABCD的四個頂點(diǎn)分別在這四條直線上,放置方式如圖所示,AB4,BC6,則tanα的值等于(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DECF交于點(diǎn)G.

(1)如圖1,若四邊形ABCD是正方形,且DECF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DECF,求證:;

(3)如圖3,若四邊形ABCD是平行四邊形,當(dāng)∠B=EGF時,第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市20191121---1127日最高氣溫走勢圖,則下列說法不正確的是(

A.21---22日的最高氣溫呈上升趨勢

B.7天中,23日的最高氣溫高于其他6天的的最高氣溫

C.23---25日的最高氣溫呈下降趨勢

D.相鄰兩天中,24---25日的最高氣溫變化最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】積極響應(yīng)市委市政府加快建設(shè)綠水青山的美麗樂山的號召,我市某街道決定從備選的五種樹中選購一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行我最喜歡的一種樹的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結(jié)果整理后,繪制成如圖所示兩個不完整的統(tǒng)計圖:

請根據(jù)所給信息解答以下問題:

(1)這次參與調(diào)查的居民人數(shù)為______;

(2)請將條形和扇形統(tǒng)計圖補(bǔ)充完整;

(3)請計算扇形統(tǒng)計圖中楓樹所在扇形的圓心角度數(shù);

(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民2萬人,請你估計這2萬人中最喜歡玉蘭樹的有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在寬20米,長32米的矩形耕地上,修筑同樣寬的三條路(兩條縱向,一條橫向,并且橫向與縱向互相垂直),把這塊耕地分成大小相等的六塊試驗田,要使試驗田的面積是570平方米,問道路應(yīng)該多寬?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),與y軸交于點(diǎn)C.

1= ,= ;

2)根據(jù)函數(shù)圖象可知,當(dāng)時,x的取值范圍是 ;

3)過點(diǎn)AADx軸于點(diǎn)D,點(diǎn)P是反比例函數(shù)在第一象限的圖象上一點(diǎn).設(shè)直線OP與線段AD交于點(diǎn)E,當(dāng)=31時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線軸兩個交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點(diǎn)( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案