【題目】如圖,過點(diǎn)C(1,2)分別作x軸、y軸的平行線,交直線y=﹣x+6A、B兩點(diǎn),若反比例函數(shù)(x0)的圖象與△ABC有公共點(diǎn),則k的取值范圍是________

【答案】

【解析】

先求出點(diǎn)A、B的坐標(biāo),根據(jù)反比例函數(shù)系數(shù)的幾何意義可知,當(dāng)反比例函數(shù)圖象與△ABC相交于點(diǎn)C時(shí)k的取值最小,當(dāng)與線段AB相交時(shí),k能取到最大值,根據(jù)直線y=-x+6,設(shè)交點(diǎn)為(x,-x+6)時(shí)k值最大,然后列式利用二次函數(shù)的最值問題解答即可得解.

:∵點(diǎn)C(1,2),BC∥y軸,AC∥x軸,
∴當(dāng)x=1時(shí),y=-1+6=5,
當(dāng)y=2時(shí),-x+6=2,解得x=4,
∴點(diǎn)A、B的坐標(biāo)分別為A(4,2),B(1,5),
根據(jù)反比例函數(shù)系數(shù)的幾何意義,當(dāng)反比例函數(shù)與點(diǎn)C相交時(shí),k=1×2=2最小,
設(shè)反比例函數(shù)與線段AB相交于點(diǎn)(x,-x+6)時(shí)k值最大,
k=x(-x+6)=-x2+6x=-(x-3)2+9,
∵1≤x≤4,
∴當(dāng)x=3時(shí),k值最大,
此時(shí)交點(diǎn)坐標(biāo)為(3,3),
因此,k的取值范圍是2≤k≤9.
故答案為:2≤k≤9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是平行四邊形ABCD的對稱中心,將直線DB繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),交DC、AB于點(diǎn)E、F.

(1)證明:DEO≌△BFO;

(2)若DB=2,AD=1,AB=,當(dāng)DB繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn)45°時(shí),判斷四邊形AECF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,AB是O的直徑,OD弦BC于點(diǎn)F,交O于點(diǎn)E,連結(jié)CE、AE、CD,若AEC=ODC

(1)求證:直線CD為O的切線;

(2)若AB=5,BC=4,求線段CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知線段a,P為線段a上任意一點(diǎn),已知圖形M,Q為圖形M上任意一點(diǎn),當(dāng)P,Q兩點(diǎn)間的距離最小時(shí),將此時(shí)PQ的長度稱為圖形M與線段a的近點(diǎn)距;當(dāng)PQ兩點(diǎn)間的距離最大時(shí),將此時(shí)PQ的長度稱為圖形M與線段a的遠(yuǎn)點(diǎn)距.

根據(jù)閱讀材料解決下列問題:

如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,﹣2),正方形ABCD的對稱中心為原點(diǎn)O

1)線段AB與線段CD的近點(diǎn)距是   ,遠(yuǎn)點(diǎn)距是   

2)如圖2,直線y=﹣x+6x軸,y軸分別交于點(diǎn)E,F,則線段EF和正方形ABCD的近點(diǎn)距是   ,遠(yuǎn)點(diǎn)距是   

3)直線yx+bb≠0)與x軸,y軸分別交于點(diǎn)R,S,線段RS與正方形ABCD的近距點(diǎn)是,則b的值是   

4)在平面直角坐標(biāo)系xOy中,有一個(gè)矩形GHMN,若此矩形至少有一個(gè)頂點(diǎn)在以O為圓心1為半徑的圓上,其余各點(diǎn)可能在圓上或圓內(nèi),將正方形ABCD繞點(diǎn)O旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,它與矩形GHMN的近點(diǎn)距的最小值是  ,遠(yuǎn)點(diǎn)距的最大值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加(  )m.

A. 1 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖(1),已知△ABC為正三角形,點(diǎn)MBC上一點(diǎn),點(diǎn)NAC上一點(diǎn),AM、BN相交于點(diǎn)Q,BM=CN.求出∠BQM的度數(shù);

(2)將(1)中的△ABC”分別改為正方形ABCD、正五邊形ABCDE、…正n邊形ABCD,“點(diǎn)NAC上一點(diǎn)改為點(diǎn)NCD上一點(diǎn),其余條件不變,分別推斷出∠BQM等于多少度,將結(jié)論填入下表:

正多邊形

正方形

正五邊形

……

n邊形

∠BQM的度數(shù)

……

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱為夢之點(diǎn),例如,點(diǎn)(1,1),(﹣ 2,﹣ 2),(,),…,都是夢之點(diǎn),顯然夢之點(diǎn)有無數(shù)個(gè).

(1)若點(diǎn) P(2,b)是反比例函數(shù) (n 為常數(shù),n ≠ 0) 的圖象上的夢之點(diǎn),求這個(gè)反比例函數(shù)解析式;

(2)⊙O 的半徑是 ,

①求出⊙O上的所有夢之點(diǎn)的坐標(biāo);

②已知點(diǎn) M(m,3),點(diǎn) Q 是(1)中反比例函數(shù) 圖象上異于點(diǎn) P 的夢之點(diǎn),過點(diǎn)Q 的直線 l y 軸交于點(diǎn) A,∠OAQ=45°.若在⊙ O 上存在一點(diǎn) N,使得直線 MN ∥ l MN ⊥ l,求出 m 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)圓柱形玻璃杯高,底面周長為,有一只螞蟻在一側(cè)距下底的外側(cè)點(diǎn),與點(diǎn)正對的容器內(nèi)側(cè)距下底點(diǎn)處有一飯粒,螞蟻想吃處的飯粒,要從杯子的外側(cè)爬到杯子的內(nèi)側(cè),杯子的厚度忽略不計(jì),則至少需要爬________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有2個(gè)完全相同的小球,分別標(biāo)有數(shù)字0和-2;乙袋中有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字-201,小明從甲袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個(gè)小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(xy)

1寫出點(diǎn)Q所有可能的坐標(biāo);

2求點(diǎn)Qx軸上的概率.

查看答案和解析>>

同步練習(xí)冊答案