【題目】已知O為直線AB上的一點(diǎn),∠COE是直角,OF平分∠AOE

1)如圖1,若∠COF=34°,則∠BOE=______;

2)如圖1,若∠BOE=80°,則∠COF=______

3)若∠COF=m°,則∠BOE=______度;∠BOE與∠COF的數(shù)量關(guān)系為______

4)當(dāng)∠COE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),(3)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說(shuō)明理由.

【答案】168° (2) 40° 3 2m BOE=2COF;(4)成立,理由見解析.

【解析】

1)根據(jù)互余得到∠EOF=90°-34°,再由OF平分∠AOE,得到∠AOE=2EOF,然后根據(jù)鄰補(bǔ)角的定義即可得到∠BOE;

2)設(shè)∠COF=n°,根據(jù)互余得到∠EOF=90°-n°,再由OF平分∠AOE,得到∠AOE=2EOF=180°-2n°,然后根據(jù)鄰補(bǔ)角的定義得到∠BOE=180°-180°-2n°=2n°=80°,于是得到結(jié)論;

3)當(dāng)∠COF=m°,根據(jù)互余得到∠EOF=90°-m°,再由OF平分∠AOE,得到∠AOE=2EOF=180°-2m°,然后根據(jù)鄰補(bǔ)角的定義得到∠BOE=180°-180°-2m°=2m°,所以有∠BOE=2COF;

4)同(3),可得到∠BOE=2COF

解:(1)∵∠COE是直角,∠COF=34°

∴∠EOF=90°-34°=56°,

OF平分∠AOE

∴∠AOE=2EOF=112°

∴∠BOE=180°-112°=68°;

2)設(shè)∠COF=n°,

∴∠EOF=90°-n°

∴∠AOE=2EOF=180°-2n°,

∴∠BOE=180°-180°-2n°=2n°=80°,

∴∠COF=40°;

3)當(dāng)∠COF=m°,

∴∠EOF=90°-m°,

∴∠AOE=2EOF=180°-2m°

∴∠BOE=180°-180°-2m°=2m°,

∴∠BOE=2COF

4)∠BOE與∠COF的數(shù)量關(guān)系仍然成立.理由如下:

設(shè)∠COF=n°

∵∠COE是直角,

∴∠EOF=90°-n°

又∵OF平分∠AOE

∴∠AOE=2EOF=180°-2n°,

∴∠BOE=180°-180°-2n°=2n°,

即∠BOE=2COF

故答案為:(168° ;(2) 40° ;(3 2m ,∠BOE=2COF (4)成立,理由見解析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5張邊長(zhǎng)為2的正方形紙片,4張邊長(zhǎng)分別為2、3的矩形紙片,6張邊長(zhǎng)為3的正方形紙片,從其中取出若干張紙片,且每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(原紙張進(jìn)行無(wú)空隙、無(wú)重疊拼接),則拼成正方形的邊長(zhǎng)最大為

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售某種商品,原價(jià)560元.隨著不同幅度的降價(jià)(元),日銷售量(件)發(fā)生相應(yīng)變化,關(guān)系如圖所示:

1)根據(jù)圖像完成下表

降價(jià)/

5

10

15

日銷售量/

780

840

870

2)售價(jià)為560元時(shí),日銷售量為多少件.

3)如果該商場(chǎng)要求日銷售量為1110件,該商品應(yīng)降價(jià)多少元.

4)設(shè)該商品的售價(jià)為元,日銷售量為件,求之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A23),點(diǎn)B﹣2,1),在x軸上存在點(diǎn)PA,B兩點(diǎn)的距離之和最小,則P點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù),根據(jù)所測(cè)數(shù)據(jù)不能求出A,B間距離的是( 。

A.BC,∠ACB
B.DE,DC,BC
C.EF,DE,BD
D.CD,∠ACB,∠ADB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】趙爽弦圖是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形,如圖所示,若這四個(gè)全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個(gè)陰影小正方形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D在反比例函數(shù)y= 的圖象上,過(guò)點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過(guò)點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC=

(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;
(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓚(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為x千米/小時(shí),根據(jù)題意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在線段CB的延長(zhǎng)線上,連接DEAB于點(diǎn)F,AED=2CED,點(diǎn)GDF的中點(diǎn),若BE=2,DF=8,則AB的長(zhǎng)為______

查看答案和解析>>

同步練習(xí)冊(cè)答案