【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D在BC邊上,且BD=BC,過點(diǎn)B作CD的垂線交AC于點(diǎn)O,以O(shè)為圓心,OC為半徑畫圓.
(1)求證:AB是⊙O的切線;
(2)若AB=10,AD=2,求⊙O的半徑.

【答案】
(1)證明:連接OD

∵BD=BC,BO⊥CD,

∴∠DBO=∠CBO.

∵BD=BC,∠DBO=∠CBO,OB=OB

∴△DBO≌△CBO,

∴OD=OC,∠ODB=∠OCB=90°,

∴AB是⊙O的切線.


(2)解:∵AB=10,AD=2,∴BC=BD=AB﹣AD=8,

在Rt△ABC中,AC= = =6,

設(shè)⊙O的半徑為r,則OD=OC=r,AO=AC﹣OC=6﹣r,

在Rt△ADO中,∵AD2+OD2=AO2

∴22+r 2=(6﹣r)2

解之得r= ,即⊙O的半徑為


【解析】(1)連接OD,證明△DBO≌△CBO,即可證得∠ODB=90°,從而證得AB是切線;(2)Rt△ABC中利用勾股定理求得AC的長(zhǎng),然后在直角△ADO中根據(jù)勾股定理列方程求得半徑的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請(qǐng)用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P在優(yōu)弧CAB上時(shí),△PBC的面積最大,請(qǐng)保留作圖痕跡,并求出△PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,分別以點(diǎn)A,B為圓心,大于 AB長(zhǎng)為半徑作弧,兩弧分別交于M,N兩點(diǎn),過M,N兩點(diǎn)的直線交AC于點(diǎn)E,若AC=8,BC=6,則AE的長(zhǎng)為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y1=ax+b的圖象分別與x,y軸交于點(diǎn)B,A,與反比例函數(shù)y2= 的圖象交于點(diǎn)C,D,CE⊥x軸于點(diǎn)E,tan∠ABO= ,OB=4,OE=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出當(dāng)x<0且y1<y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡(jiǎn),再求值:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y,其中x= ,y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若BD= ﹣1,則∠ACD=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,AD為邊上的高,將△ADC沿直線AC翻折得到△AEC,延長(zhǎng)EA交⊙O于點(diǎn)P,連接FC,交AB于N.
(1)求證:∠BAC=∠ABC+∠ACF;
(2)求證:EF=DB;
(3)若AD=5,CD=10,CB∥AF,求點(diǎn)F到AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點(diǎn)P(x﹣4,2x+6)在平面直角坐標(biāo)系的第二象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(0,0),A(6,0),C(0,3).動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)的速度沿OC向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng) 秒時(shí),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以相等的速度沿AO向終點(diǎn)O運(yùn)動(dòng).當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).
(1)用含t的代數(shù)式表示OP,OQ;
(2)當(dāng)t=1時(shí),如圖1,

將沿△OPQ沿PQ翻折,點(diǎn)O恰好落在CB邊上的點(diǎn)D處,求點(diǎn)D的坐標(biāo);
(3)連接AC,將△OPQ沿PQ翻折,得到△EPQ,如圖2.

問:PQ與AC能否平行?PE與AC能否垂直?若能,求出相應(yīng)的t值;若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案