精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線的一點,AC平分∠FAB交⊙O于點C,過點C作CE⊥DF,垂足為點E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.

【答案】
(1)證明:連接CO,

∵OA=OC,

∴∠OCA=∠OAC,

∵AC平分∠FAB,

∴∠OCA=∠CAE,

∴OC//FD,

∵CE⊥DF,

∴OC⊥CE,

∴CE是⊙O的切線;


(2)證明:連接BC,

在Rt△ACE中,AC= = =

∵AB是⊙O的直徑,

∴∠BCA=90°,

∴∠BCA=∠CEA,

∵∠CAE=∠CAB,

∴△ABC∽△ACE,

= ,

,

∴AB=5,

∴AO=2.5,即⊙O的半徑為2.5.


【解析】(1)證明:連接CO,證得∠OCA=∠CAE,由平行線的判定得到OC//FD,再證得OC⊥CE,即可證得結論;(2)證明:連接BC,由圓周角定理得到∠BCA=90°,再證得△ABC∽△ACE,根據相似三角形的性質即可證得結論.
【考點精析】本題主要考查了角平分線的性質定理和切線的判定定理的相關知識點,需要掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)觀察思考:如圖,線段AB上有兩個點C、D,請分別寫出以點A、B、C、D為端點的線段,并計算圖中共有多少條線段;

(2)模型構建:如果線段上有m個點(包括線段的兩個端點),則該線段上共有多少條線段?請說明你結論的正確性;

(3)拓展應用:某班45名同學在畢業(yè)后的一次聚會中,若每兩人握1次手問好,那么共握多少次手?

請將這個問題轉化為上述模型,并直接應用上述模型的結論解決問題.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求,商家又用28800元購進了第二批這種襯衫,所購數量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤不低于25%(不考慮其他因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,,P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是,連接PQ、AQ、設點P、Q運動的時間為ts.

t為何值時,四邊形ABQP是矩形;

t為何值時,四邊形AQCP是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,第一個正方形ABCD的位置如圖所示,點A的坐標為(2,0),點D的坐標為(0,4),延長CBx軸于點A1,作第二個正方形A1B1C1C;延長C1B1x軸于點A2,作第三個正方形A2B2C2C1按這樣的規(guī)律進行下去,第2018個正方形的面積為( 。

A. 20×(2017 B. 20×(2018 C. 20×(4036 D. 20×(4034

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在3×3的正方形網格中標出了∠1∠2,則∠1+∠2=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點DE分別是ACBC中點.

1)若點C恰好是AB的中點,則DE=_______cm;

2)若AC=4cm,求DE的長;

3)試說明無論AC取何值(不超過12cm),DE的長不變;

4)如圖②,已知∠AOB=120°,過角的內部任一點C畫射線OC.OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數與射線OC的位置無關.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】大家在學完勾股定理的證明后發(fā)現(xiàn)運用“同一圖形的面積不同表示方式相同”可 以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.學有所用:在等腰 三角形 ABC中,AB=AC,其一腰上的高為h,M 是底邊BC上的任意一點,M 到腰AB、AC 的距離分別為 h1、h2

(1)請你結合圖形來證明: h1+h2=h;

(2)當點MBC延長線上時,h1、h2、h 之間又有什么樣的結論.請你畫出圖形,并直

接寫出結論不必證明;

(3)利用以上結論解答,如圖在平面直角坐標系中有兩條直線l1:y=x+3,l2:y=-3x+3

若 l2上的一點M 到l1的距離是,求點 M 的坐標.

查看答案和解析>>

同步練習冊答案