【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.

(1)求證:四邊形ABCD是矩形.

(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?

【答案】(1)見解析;(2)18°.

【解析】試題分析:(1)先由對(duì)角線互相平分證明四邊形ABCD是平行四邊形,再由對(duì)角互補(bǔ)得出∠ABC=90°,即可得出結(jié)論;
(2)先求出∠FDC=36°,再求出∠DCO=54°,然后求出∠ODC=54°,即可求出∠BDF.

試題解析:

(1)證明:∵AO=CO,BO=DO

∴四邊形ABCD是平行四邊形,

∴∠ABC=∠ADC,

∵∠ABC+∠ADC=180°,

∴∠ABC=∠ADC=90°,

∴四邊形ABCD是矩形;

(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,

∴∠FDC=36°,

∵DF⊥AC,

∴∠DCO=90°﹣36°=54°,

∵四邊形ABCD是矩形,

∴OC=OD,

∴∠ODC=54°

∴∠BDF=∠ODC﹣∠FDC=18°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,tan∠ACD= ,AB=5,那么CD的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點(diǎn)F是DA延長線的一點(diǎn),AC平分∠FAB交⊙O于點(diǎn)C,過點(diǎn)C作CE⊥DF,垂足為點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)若AE=1,CE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線y2= (x>0)交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,且OA=AD,則以下結(jié)論: ①當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減小;
②k=4;
③當(dāng)0<x<2時(shí),y1<y2;
④如圖,當(dāng)x=4時(shí),EF=4.
其中正確結(jié)論的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△BCE中,點(diǎn)A是邊BE上一點(diǎn),以AB為直徑的⊙O與CE相切于點(diǎn)D,AD∥OC,點(diǎn)F為OC與⊙O的交點(diǎn),連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平移線段AB,使點(diǎn)A移動(dòng)到點(diǎn)A1

(1)畫出平移后的線段A1B1,分別連接AA1,BB1

(2)分別畫出AC⊥A1B1于點(diǎn)C,AD⊥BB1于點(diǎn)D.

(3)AA1與BB1之間的距離,就是線段   的長度.

(4)線段AB平移的距離,就是線段   的長度.

(5)線段BD的長度,是點(diǎn)B到直線   的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊長為a米,寬為b米的矩形空地建成一個(gè)矩形花園,要求在花園中修兩條入口寬均為x米的小道,其中一條小道兩邊分別經(jīng)過矩形一組對(duì)角頂點(diǎn),剩余的地方種植花草,現(xiàn)有從左至右三種設(shè)計(jì)方案如圖所示,種植花草的面積分別為S1,S2和S3,則它們的大小關(guān)系為( 。

A. S3<S1<S2 B. S1<S2<S3 C. S2<S1<S3 D. S1=S2=S3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線OA的方向是北偏東20°,射線OB的方向是北偏西40°,ODOB的反向延長線.若OC是∠AOD的平分線,則∠BOC=_____°,射線OC的方向是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)若M為EF的中點(diǎn),OM=3,∠OBC和∠OCB互余,求DG的長度.

查看答案和解析>>

同步練習(xí)冊答案