【題目】如圖,一次函數(shù)的圖像與軸軸分別交于點、點,函數(shù),與的圖像交于第二象限的點,且點橫坐標為.
(1)求的值;
(2)當時,直接寫出的取值范圍;
(3)在直線上有一動點,過點作軸的平行線交直線于點,當時,求點的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關于某點中心對稱,已知A, D1,D三點的坐標分別是(0,4),(0,3),(0,2).
(1)對稱中心的坐標;
(2)寫出頂點B, C, B1 , C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=8厘米,AC=16厘米,點P從A出發(fā),以每秒2厘米的速度向B運動,點Q從C同時出發(fā),以每秒3厘米的速度向A運動,其中一個動點到端點時,另一個動點也相應停止運動,那么,當以A、P、Q為頂點的三角形與△ABC相似時,運動時間是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調(diào)查,根據(jù)調(diào)查結果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:
(1)本次調(diào)查了 名學生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為 度,并補全條形統(tǒng)計圖;
(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數(shù);
(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“丹棱凍粑”是眉山著名特色小吃,產(chǎn)品暢銷省內(nèi)外,現(xiàn)有一個產(chǎn)品銷售點在經(jīng)銷時發(fā)現(xiàn):如果每箱產(chǎn)品盈利10元,每天可售出50箱;若每箱產(chǎn)品漲價1元,日銷售量將減少2箱.
(1)現(xiàn)該銷售點每天盈利600元,同時又要顧客得到實惠,那么每箱產(chǎn)品應漲價多少元?
(2)若該銷售點單純從經(jīng)濟角度考慮,每箱產(chǎn)品應漲價多少元才能獲利最高?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車油箱中的余油量Q(升)是它行駛的時間t(小時)的一次函數(shù),某天該汽車外出時,油箱中余油量與行駛時間的變化關系如圖.
(1)根據(jù)圖象,求油箱中的余油Q與行駛時間t的函數(shù)關系式;
(2)從外出開始算起,如果汽車每小時行駛50千米.當油箱中余油30升時,該汽車行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如1,在矩形ABCD中,AB=6,AD=10,E為AD上一點且AE=6,連接BE.
(1)將△ABE繞點B逆時針旋轉90°至△ABF(如圖2),且A、B、C三點共線,再將△ABF沿射線BC方向平移,平移速度為每秒1個單位長度,平移時間為t(s)(t≥0),當點A與點C重合時運動停止.
①在平移過程中,當點F與點E重合時,t= (s).
②在平移過程中,△ABF與四邊形BCDE重疊部分面積記為S,求s與t的關系式.
(2)如圖3,點M為直線BE上一點,直線BC上有一個動點P,連接DM、PM、DP,且EM=5,試問:是否存在點P,使得△DMP為等腰三角形?若存在,請直接寫出此時線段BP的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com