【題目】如圖,在四邊形中,,對角線與相交于點,分別是邊、的中點.
(1)求證:;
(2)當時,求的長.
【答案】(1)證明見解析;(2)2.5
【解析】
(1)連接BM、DM,根據(jù)直角三角形斜邊上 的中線的性質(zhì)求出BM=DM,根據(jù)等腰三角形性質(zhì)求出即可;
(2)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠BMN=30°,求出∠NBM=30°,求BM,根據(jù)直角三角形的性質(zhì)求出即可.
證明:(1)連接BM、DM.
∵∠ABC=∠ADC=90°,點M、點N分別是邊AC、BD的中點,
∴BM=AC,CM=AC,
∴BM=DM=AC,
∵N是BD的中點,
∴MN是BD的垂直平分線,
∴MN⊥BD
(2)解:∵∠BCA=15°,BM=CM=AC,
∴∠BCA=∠CBM=15°,
∴∠BMA=30°,
∵OB=OM,
∴∠OBM=∠BMA=30°,
∵AC=10,BM=AC,
∴BM=5,
在Rt△BMN中,∠BNM=90°,∠NBM=30°,
∴MN=BM=2.5,
答:MN的長是2.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是正方形,點E是邊BC上的任意一點,AE⊥EF,且直線EF交正方形外角的平分線CF于點F.
(1)如圖1,求證:AE=EF;
(2)如圖2,當AB=2,點E是邊BC的中點時,請直接寫出FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的動點(點D與B,C不重合),△ABD和△ACD的面積分別表示為S1和S2,下列條件不能說明AD是△ABC角平分線的是( )
A.BD=CDB.∠ADB=∠ADCC.S1=S2D.AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y= x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點D在拋物線上,DE∥y軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標為t(0<t<4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若△A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一分鐘投籃測試規(guī)定:滿分為分,成績達到分及以上為合格,成績達到分及以上為優(yōu)秀.甲、乙兩組各名學(xué)生的某次測試成績?nèi)缦拢?/span>
成績(分) | ||||||||||
甲組(人) | ||||||||||
乙組(人) |
請補充完成下面的成績分析表:
統(tǒng)計量 | 平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 | ________ | ||||
乙組 | ________ | ________ |
你認為甲、乙兩組哪一組的投籃成績較好?請寫出兩條支持你的觀點的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點.若AE=2,當EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)(,是常數(shù),)的圖象過,兩點.
(1)在圖中畫出該一次函數(shù)并求其表達式;
(2)若點在該一次函數(shù)圖象上,求的值;
(3)把的圖象向下平移3個單位后得到新的一次函數(shù)圖象,在圖中畫出新函數(shù)圖形,并直接寫出新函數(shù)圖象對應(yīng)的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸軸分別交于點、點,函數(shù),與的圖像交于第二象限的點,且點橫坐標為.
(1)求的值;
(2)當時,直接寫出的取值范圍;
(3)在直線上有一動點,過點作軸的平行線交直線于點,當時,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com