【題目】如圖,以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若,且AB10,則CB的長為_____

【答案】4

【解析】

AB關(guān)于直線BC的對(duì)稱線段AB,交半圓于D,連接ACCA,首先構(gòu)造全等三角形,然后再利用勾股定理和割線定理解答.

解:如圖,∵,且AB10,

AD4,BD6

AB關(guān)于直線BC的對(duì)稱線段AB,交半圓于D,連接AC、CA,

可得A、C、A三點(diǎn)共線,

∵線段AB與線段AB關(guān)于直線BC對(duì)稱,

ABAB,

ACACADAD4,ABAB10

ACAAADAB,

AC2AC4×1040

AC220,

又∵AC2AB2CB2,

20100CB2

CB4

故答案是:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,∠B120°.點(diǎn)P是對(duì)角線AC上一點(diǎn)(不與端點(diǎn)A重合),則線段AP+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019423日是第二十四個(gè)世界讀書日.某校組織讀書征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請你根據(jù)圖中信息解答下列問題:

1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中二等獎(jiǎng)所對(duì)應(yīng)扇形的圓心角度數(shù);

3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加世界讀書日宣傳活動(dòng),請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,地物線點(diǎn)、、均不為0)的頂點(diǎn)為,與軸的交點(diǎn)為,我們稱以為頂點(diǎn),對(duì)稱軸是軸且過點(diǎn)的拋物線為拋物線的衍生拋物線,直線為拋物線的衍生直線.

1)求拋物線的衍生拋物線和衍生直線的解析式;

2)若一條拋物線的衍生拋物線和衍生直線分別是,求這條拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時(shí),所有這種水果的批發(fā)單價(jià)均為3.圖中折線表示批發(fā)單價(jià)(元)與質(zhì)量的函數(shù)關(guān)系.

1)求圖中線段所在直線的函數(shù)表達(dá)式;

2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)DDFBC,交AB的延長線于點(diǎn)F.

(1)求證:DF為⊙O的切線;

(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商品銷售某種商品,平均每天可售出20件,每件盈利50元.為了擴(kuò)大銷售,增加盈利,該店采取了降價(jià)措施,在每件盈利不少于25元的前提下,經(jīng)過一段時(shí)間銷售,發(fā)現(xiàn)銷售單價(jià)每降低1元,平均每天可多售出2件.

1)若每件商品降價(jià)2元,則平均每天可售出______件;

2)當(dāng)每件商品降價(jià)多少元時(shí),該商品每天的銷售利潤為1600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若b是正數(shù),直線ly=by軸交于點(diǎn)A;直線ay=xby軸交于點(diǎn)B;拋物線Ly=x2+bx的頂點(diǎn)為C,且Lx軸右交點(diǎn)為D

1)若AB=8,求b的值,并求此時(shí)L的對(duì)稱軸與a的交點(diǎn)坐標(biāo);

2)當(dāng)點(diǎn)Cl下方時(shí),求點(diǎn)Cl距離的最大值;

3)設(shè)x00,點(diǎn)(x0,y1),(x0,y2),(x0y3)分別在l,aL上,且y3y1y2的平均數(shù),求點(diǎn)(x00)與點(diǎn)D間的距離;

4)在La所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“美點(diǎn)”,分別直接寫出b=2019b=2019.5時(shí)“美點(diǎn)”的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,,點(diǎn),分別在邊,上,且垂直.

1)如圖1,求證:;

2)如圖2,平移線段至線段,于點(diǎn),圖中陰影部分的面積與正方形的面積之比為,求的周長;

3)如圖3,若,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)至線段,連接,則線段的最小值為______.

查看答案和解析>>

同步練習(xí)冊答案