【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為2,∠B50°,AC5,求圖中陰影部分的周長.

【答案】1)直線DE與⊙O相切,理由見解析;(2)陰影部分的周長=5+

【解析】

1)連接OD,OEAD,證明△OAE≌△ODE,可得∠ODE=OAE=90°,即ODED,所以直線DE與⊙O相切;
2)根據(jù)陰影部分的周長= AE+DE +AD,再根據(jù)弧長的計算公式即可得出圖中陰影部分的周長.

解:(1)直線DE與⊙O相切,理由如下:

連接OE、OD,如圖,

AC是⊙O的切線,∴ABAC,∴∠OAC90°

∵點EAC的中點,O點為AB的中點,

OEBC

∴∠1=∠B,∠2=∠3,

OBOD,

∴∠B=∠3,∴∠1=∠2,

在△AOE和△DOE中:

,

∴△AOE≌△DOESAS

∴∠ODE=∠OAE90°

DEOD,

OD為⊙O的半徑,

DE為⊙O的切線;

2)∵DE、AE是⊙O的切線,

DEAE

∵點EAC的中點,

DEAEAC2.5,

又∠AOD2B2×50°100°,

∴陰影部分的周長=2.5+2.5+5+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD交于點O,過點AAEBC于點E,延長BCF,使CFBE,連接DF

1)求證:四邊形AEFD是矩形;(2)若BF8,DF4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滴滴快車是一種便捷的出行工具,某地的計價規(guī)則如下表:

計費項目

里程費

時長費

遠(yuǎn)途費

單價

2/公里

/分鐘

1/公里

注:車費由里程費、時長費、遠(yuǎn)途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠(yuǎn)途費的收取方式為:行車?yán)锍?/span>7公里以內(nèi)(含7公里)不收遠(yuǎn)途費,超過7公里的,超出部分每公里收1元.

小李與小張分別從不同地點,各自同時乘坐滴滴快車,到同一地點相見,已知到達(dá)約定地點時他們的實際行車?yán)锍谭謩e為7公里與9公里,兩人付給滴滴快車的乘車費相同.其中一人先到達(dá)約定地點,他等候另一人的時間等于他自己實際乘車時間,且恰好是另一人實際乘車時間的一半,則小李的乘車費為______元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,rn,則當(dāng)直線l與x軸所成銳角為30時,且r1=1時,r2017=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代第一部數(shù)學(xué)專著,它的出現(xiàn)標(biāo)志中國古代數(shù)學(xué)形成了完整的體系.折竹抵地問題源自《九章算術(shù)》中:今有竹高一丈,末折抵地,去本四尺,問折者高幾何?意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)(

A.3B.5C.4.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.732,tan20°≈0.36,結(jié)果精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=3,AD=5,BAD=60°,點C為弧BD的中點,則AC的長是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將A(1,0)、B(0,2)、C(2,3)、D(3,1)用線段依次連接起來形成一個圖案(圖案).將圖案繞點O逆時針旋轉(zhuǎn)90°得到圖案;以點O為位似中心,位似比為1:2將圖案在位似中心的異側(cè)進(jìn)行放大得到圖案

(1)在坐標(biāo)系中分別畫出圖案和圖案;

(2)若點D在圖案中對應(yīng)的點記為點E,在圖案中對應(yīng)的點記為點F,則SDEF= ;

(3)若圖案上任一點P(A、B除外)的坐標(biāo)為(a,b),圖案中與之對應(yīng)的點記為點Q,圖案中與之對應(yīng)的點記為點R,則SPQR= .(用含有a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A1,);點F0,1)在y軸上.直線y=﹣1y軸交于點H

1)求二次函數(shù)的解析式;

2)點P是(1)中圖象上的點,過點Px軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP

3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案