【題目】如圖,在△ABC中,D、EF分別是各邊的中點(diǎn),BHAC邊上的高.

1)求證:四邊形DBEF是平行四邊形;(2)求證:∠DFE=∠DHE

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)三角形中位線定理得到DFBC,EFAB,于是得到結(jié)論;

2)根據(jù)平行線的性質(zhì)得到∠A=∠EFH,再在RtABH中利用直角三角形斜邊上的中線等于斜邊一半的性質(zhì)得到DADH,于是∠EFH=∠FHD,同理,∠CHE=∠AFD,根據(jù)平角的定義即可得到結(jié)論.

證明:(1)∵D、E、F分別是各邊的中點(diǎn),

DFEF是△ABC的中位線,

DFBC,EFAB,

DFBE,EFBD,

∴四邊形DBEF是平行四邊形;

2)∵EFAB,∴∠A=∠EFH,

BHAC,∴∠AHB90°,

DAB的中點(diǎn),

ADDH,

∴∠AHD=∠A

∴∠EFH=∠FHD,

同理,∠CHE=∠AFD,

∴∠DFE=∠DHE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E、F分別在ABBC上,DEF為等腰直角三角形,DEF=90°,AD+CD=10,AE=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+cx軸交于點(diǎn)A,B(AB的左側(cè)),拋物線的對(duì)稱軸為直線x=1,AB=4.

(1)求拋物線的表達(dá)式;

(2)拋物線上有兩點(diǎn)M(x1,y1)和N(x2,y2),若x11,x21,x1+x22,試判斷y1y2的大小,并說(shuō)明理由;

(3)平移該拋物線,使平移后的拋物線經(jīng)過(guò)點(diǎn)O,且與x軸交于點(diǎn)D,記平移后的拋物線頂點(diǎn)為點(diǎn)P

①若△ODP是等腰直角三角形,求點(diǎn)P的坐標(biāo);

②在①的條件下,直線x=m(0m3)分別交線段BP、BC于點(diǎn)E、F,且△BEF的面積:△BPC的面積=2:3,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題再現(xiàn):

數(shù)形結(jié)合是一種重要的數(shù)學(xué)思想方法,借助這種思想方法可將抽象的數(shù)學(xué)知識(shí)變得直觀并且具有可操作性.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過(guò)表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.

例如:利用圖形的幾何意義驗(yàn)證完全平方公式.

將一個(gè)邊長(zhǎng)為的正方形的邊長(zhǎng)增加,形成兩個(gè)長(zhǎng)方形和兩個(gè)正方形,如圖所示:這個(gè)圖形的面積可以表示成:

這就驗(yàn)證了兩數(shù)和的完全平方公式.

類比解決:

請(qǐng)你類比上述方法,利用圖形的幾何意義驗(yàn)證平方差公式.

(要求畫出圖形并寫出推理過(guò)程)

問(wèn)題提出:如何利用圖形幾何意義的方法證明?

如圖所示,表示1個(gè)1×1的正方形,即:,表示1個(gè)2×2的正方形,恰好可以拼成1個(gè)2×2的正方形,因此:、、就可以表示2個(gè)2×2的正方形,即:、、恰好可以拼成一個(gè)的大正方形.

由此可得:.

嘗試解決:

請(qǐng)你類比上述推導(dǎo)過(guò)程,利用圖形的幾何意義確定:_______.(要求寫出結(jié)論并構(gòu)造圖形寫出推證過(guò)程).

問(wèn)題拓廣:

請(qǐng)用上面的表示幾何圖形面積的方法探究:_______.(直接寫出結(jié)論即可,不必寫出解題過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于的不等式組的整數(shù)解僅有,,那么適合這個(gè)不等式組的整數(shù),組成的有序數(shù)對(duì)共有_______個(gè);如果關(guān)于的不等式組(其中,為正整數(shù))的整數(shù)解僅有,那么適合這個(gè)不等式組的整數(shù),組成的有序數(shù)對(duì)共有______個(gè).(請(qǐng)用含、的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名自行車愛好者準(zhǔn)備在段長(zhǎng)為3500米的筆直公路上進(jìn)行比賽,比賽開始時(shí)乙在起點(diǎn),甲在乙的前面.他們同時(shí)出發(fā),勻速前進(jìn),已知甲的速度為12/秒,設(shè)甲、乙兩人之間的距離為s(),比賽時(shí)間為t(),圖中的折線表示從兩人出發(fā)至其中一人先到達(dá)終點(diǎn)的過(guò)程中s()t()的函數(shù)關(guān)系根據(jù)圖中信息,回答下列問(wèn)題:

(1)乙的速度為多少米/秒;

(2)當(dāng)乙追上甲時(shí),求乙距起點(diǎn)多少米;

(3)求線段BC所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�