【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點(diǎn)坐標(biāo)為A(﹣1,﹣3),與x軸的一個(gè)交點(diǎn)為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個(gè)交點(diǎn)是(3,0);④方程ax2+bx+c+3=0有兩個(gè)相等的實(shí)數(shù)根;其中正確的是( 。

A. ①③ B. ②③ C. ③④ D. ②④

【答案】D

【解析】

①錯(cuò)誤.由題意a>0.b>0,c<0,abc<0;
②正確.因?yàn)?/span>y1=ax2+bx+c(a≠0)圖象與直線y2=mx+n(m≠0)交于A,B兩點(diǎn),當(dāng)ax2+bx+c<mx+n時(shí),-3<x<-1;即不等式ax2+(b-m)x+c-n<0的解集為-3<x<-1;故②正確;
③錯(cuò)誤.拋物線與x軸的另一個(gè)交點(diǎn)是(1,0);
④正確.拋物線y1=ax2+bx+c(a≠0)圖象與直線y=-3只有一個(gè)交點(diǎn),方程ax2+bx+c+3=0有兩個(gè)相等的實(shí)數(shù)根,故④正確.

解:∵拋物線開(kāi)口向上,∴a>0,
∵拋物線交y軸于負(fù)半軸,∴c<0,
∵對(duì)稱軸在y軸左邊,∴- <0,
∴b>0,
∴abc<0,故①錯(cuò)誤.
∵y1=ax2+bx+c(a≠0)圖象與直線y2=mx+n(m≠0)交于A,B兩點(diǎn),
當(dāng)ax2+bx+c<mx+n時(shí),-3<x<-1;
即不等式ax2+(b-m)x+c-n<0的解集為-3<x<-1;故②正確,
拋物線與x軸的另一個(gè)交點(diǎn)是(1,0),故③錯(cuò)誤,
∵拋物線y1=ax2+bx+c(a≠0)圖象與直線y=-3只有一個(gè)交點(diǎn),
∴方程ax2+bx+c+3=0有兩個(gè)相等的實(shí)數(shù)根,故④正確.
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,平分,,.線段的長(zhǎng)度為:________;求線段的長(zhǎng)度和的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖①,△ABC是等邊三角形,在邊AB、BC的延長(zhǎng)線上截取BM=CN,連結(jié)MCAN,延長(zhǎng)MCAN于點(diǎn)P

1)求證:△ACN≌△CBM

2)∠CPN= °;(給出求解過(guò)程)

3)應(yīng)用:將圖①的△ABC分別改為正方形ABCD和正五邊形ABCDE,如圖②、③,在邊AB、BC的延長(zhǎng)線上截取BM=CN,連結(jié)MCDN,延長(zhǎng)MCDN于點(diǎn)P,則圖②中∠CPN= °;(直接寫出答案)

4)圖③中∠CPN= °;(直接寫出答案)

5)拓展:若將圖①的△ABC改為正n邊形,其它條件不變,則∠CPN= °(用含n的代數(shù)式表示,直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家八縱八橫高鐵網(wǎng)絡(luò)規(guī)劃中京昆通道的重要組成部分──西成高鐵于2017126日開(kāi)通運(yùn)營(yíng),西安至成都列車運(yùn)行時(shí)間由14小時(shí)縮短為3.5小時(shí).張明和王強(qiáng)相約從成都坐高鐵到西安旅游.如圖,張明家(記作A)在成都東站(記作B)南偏西30°的方向且相距4000米,王強(qiáng)家(記作C)在成都東站南偏東60°的方向且相距3000米,則張明家與王強(qiáng)家的距離為(  )

A. 6000 B. 5000 C. 4000 D. 2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①、圖②均是5×6的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),小正方形的邊長(zhǎng)為1,點(diǎn)A、EF均在格點(diǎn)上.在圖①、圖②中,只用無(wú)刻度的直尺,在給定的網(wǎng)格中按要求畫圖,所畫圖形的頂點(diǎn)均在格點(diǎn)上,不要求寫出畫法.

1)在圖①中畫一個(gè)正方形ABCD,使其面積為5

2)在圖②中畫一個(gè)等腰△EFG,使EF為其底邊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB=90°,AC=12.點(diǎn)D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點(diǎn)分別為F,G.

(1)如圖,點(diǎn)D在線段CB上,四邊形ACDE是正方形.

①若點(diǎn)GDE中點(diǎn),求FG的長(zhǎng).

②若DG=GF,求BC的長(zhǎng).

(2)已知BC=9,是否存在點(diǎn)D,使得DFG是等腰三角形?若存在,求該三角形的腰長(zhǎng);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對(duì)稱軸是直線x=﹣1,與x軸的一個(gè)交點(diǎn)是A(﹣3,0)其圖象的一部分如圖所示,對(duì)于下列說(shuō)法:①2a=b;②abc>0,③若點(diǎn)B(﹣2,y1),C(﹣,y2)是圖象上兩點(diǎn),則y1<y2;④圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo)為(1,0).其中正確的是_____(把正確說(shuō)法的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在同一平面直角坐標(biāo)系中,表示一次函數(shù)ymx+n與正比例函數(shù)ymnxm,n是常數(shù),且mn≠0)圖象的是(  )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(3,0)和(2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案