精英家教網 > 初中數學 > 題目詳情

【題目】在ABCD中,點E、F分別在AB、CD上,且AE=CF.

(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD=BC,∠A=∠C,

∵在△ADE和△CBF中,

,

∴△ADE≌△CBF(SAS);


(2)證明:∵四邊形ABCD是平行四邊形,

∴AB∥CD,AB=CD,

∵AE=CF,

∴DF=EB,

∴四邊形DEBF是平行四邊形,

又∵DF=FB,

∴四邊形DEBF為菱形.


【解析】(1)首先根據平行四邊形的性質可得AD=BC,∠A=∠C,再加上條件AE=CF可利用SAS證明△ADE≌△CBF;(2)首先證明DF=BE,再加上條件AB∥CD可得四邊形DEBF是平行四邊形,又DF=FB,可根據鄰邊相等的平行四邊形為菱形證出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】根據題意解答
(1)用配方法解一元二次方程:x2﹣6x+4=0.
(2)已知關于x的一元二次方程x2﹣4x+m=0的根的判別式的值為4,求m值及方程的根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將斜邊長為4的直角三角板放在直角坐標系xOy中,兩條直角邊分別與坐標軸重合,P為斜邊的中點.現將此三角板繞點O順時針旋轉120°后點P的對應點的坐標是( )

A.( ,1)
B.(1,﹣
C.(2 ,﹣2)
D.(2,﹣2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC中,點D,E分別在AB,AC上,且CD與BE相交于點F,已知△BDF的面積為6,△BCF的面積為9,△CEF的面積為6,則四邊形ADFE的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】寧波軌道交通4號線已開工建設,計劃2020年通車試運營.為了了解鎮(zhèn)民對4號線地鐵票的定價意向,某鎮(zhèn)某校數學興趣小組開展了“你認為寧波4號地鐵起步價定為多少合適”的問卷調查,并將調查結果整理后制成了如下統(tǒng)計圖,根據圖中所給出的信息解答下列問題:

(1)求本次調查中該興趣小組隨機調查的人數;
(2)請你把條形統(tǒng)計圖補充完整;
(3)如果在該鎮(zhèn)隨機咨詢一位居民,那么該居民支持“起步價為2元或3元”的概率是
(4)假設該鎮(zhèn)有3萬人,請估計該鎮(zhèn)支持“起步價為3元”的居民大約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=﹣ ,且經過A,C兩點,與x軸的另一個交點為點B.

(1)求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求四邊形PAOC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△AOC相似?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O在∠APB的平分線上,⊙O與PA相切于點C.

(1)求證:直線PB與⊙O相切;
(2)PO的延長線與⊙O交于點E.若⊙O的半徑為3,PC=4.求弦CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】廣安某網站調查,2016年網民們最關注的熱點話題分別有:消費、教育、環(huán)保、反腐及其它共五類.根據調查的部分相關數據,繪制的統(tǒng)計圖表如下:

根據以上信息解答下列問題:
(1)請補全條形統(tǒng)計圖并在圖中標明相應數據;
(2)若廣安市約有900萬人口,請你估計最關注環(huán)保問題的人數約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現準備從這四人中隨機抽取兩人進行座談,則抽取的兩人恰好是甲和乙的概率是多少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(Ⅰ)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(Ⅱ)如圖②,若∠CAB=60°,求BD的長.

查看答案和解析>>

同步練習冊答案