【題目】如圖,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒4個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0),過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.

(1)求證:AE=DF;
(2)當(dāng)四邊形BFDE是矩形時(shí),求t的值;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.

【答案】
(1)

解:證明:在Rt△CDF中,∠C=30°

∴DF= CD,

∴DF= 4t=2,

又∵AE=2t,

∴AE=DF.


(2)

解:當(dāng)四邊形BFDE是矩形時(shí),有BE=DF,

∵Rt△ABC中,∠C=30°

∴AB= AC= ×48=24,

∴BE=AB﹣AE=24﹣2t,

∴24﹣2t=2t,

∴t=6.


(3)

解:∵∠B=90°,DF⊥BC

∴AE∥DF,∵AE=DF,

∴四邊形AEFD是平行四邊形,

由(1)知:四邊形AEFD是平行四邊形

則當(dāng)AE=AD時(shí),四邊形AEFD是菱形

∴2t=48﹣4t,

解得t=8,又∵t≤ = =12,

∴t=8適合題意,

故當(dāng)t=8s時(shí),四邊形AEFD是菱形.


【解析】(1)由∠DFC=90°,∠C=30°,證出DF=2t=AE;(2)當(dāng)四邊形BEDF是矩形時(shí),△DEF為直角三角形且∠EDF=90°,求出t的值即可;(3)先證明四邊形AEFD為平行四邊形.得出AB=3,AD=AC﹣DC=48﹣4t,若△DEF為等邊三角形,則四邊形AEFD為菱形,得出AE=AD,2t=48﹣4t,求出t的值即可;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一組數(shù)據(jù)1,8,5,3,3的中位數(shù)是(  )
A.3
B.3.5
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)

(1)情境觀察

將矩形紙片ABCD沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖23-1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A(A′)按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖23-2所示.

觀察圖23-2可知:與BC相等的線段是 ,∠CAC′= 度.

(2)問(wèn)題探究

如圖23-3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(3)拓展延伸

如圖23-4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB=k·AE,AC=k·AF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路:

(1)請(qǐng)你按照他們的解題思路過(guò)程完成解答過(guò)程;
(2)填空:在△DEF中,DE=15,EF=13,DF=4,則△DEF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線y=﹣2x+4向下平移5個(gè)單位長(zhǎng)度,平移后直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)權(quán)威統(tǒng)計(jì),去年江門(mén)有80%以上的家庭年收入不低于10萬(wàn)元,下面一定不低于10萬(wàn)元的是(  )

A.家庭年收入的平均數(shù)B.家庭年收入的眾數(shù)

C.家庭年收入的中位數(shù)D.家庭年收入的平均數(shù)和眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式(x+3y)2﹣(x+3y)的公因式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,有一寬度為1的刻度尺沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q,交直線AC于點(diǎn)M和點(diǎn)N,交x軸于點(diǎn)E和點(diǎn)F

(1)求點(diǎn)AB、C的坐標(biāo);

(2)當(dāng)點(diǎn)M和點(diǎn)N都在線段AC上時(shí),連接EN,如果點(diǎn)E的坐標(biāo)為(4,0),求sin∠ANE的值;

(3)在刻度尺平移過(guò)程中,當(dāng)以點(diǎn)P、Q、N、M為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列一元一次方程解應(yīng)用題:

某管道由甲、乙兩工程隊(duì)單獨(dú)施工分別需要30天、20.

(1)如果兩隊(duì)從管道兩端同時(shí)施工,需要多少天完工?

(2)又知甲隊(duì)單獨(dú)施工每天需付200元施工費(fèi),乙隊(duì)單獨(dú)施工每天需付280元施工費(fèi),那么是由甲隊(duì)單獨(dú)施工,還是由乙隊(duì)單獨(dú)施工,還是由兩隊(duì)同時(shí)施工?請(qǐng)你按照少花錢(qián)多辦事的原則,設(shè)計(jì)一個(gè)方案,并通過(guò)計(jì)算說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案