【題目】數(shù)學(xué)活動(dòng)

(1)情境觀察

將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△A′C′D,如圖23-1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A(A′)按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖23-2所示.

觀察圖23-2可知:與BC相等的線段是 ,∠CAC′= 度.

(2)問題探究

如圖23-3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(3)拓展延伸

如圖23-4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H. 若AB=k·AE,AC=k·AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

【答案】(1DA,90;(2FQ=EP;證明如下;(3HE=HF,理由如下.

【解析】解:(1)如圖2,由旋轉(zhuǎn)的性質(zhì)可知,△ABC≌△A′C′D,

∴BC=A′D,∠ACB=∠C′AD,又∠ACB+∠CAB=90°

∴∠C′AD+∠CAB=90°,即∠CAC′=90°,

故答案為:A′D;=90°;

2EP=FQ,

證明:∵△ABE是等腰直角三角形,

∴∠EAB=90°,即∠EAP+∠BAG=90°,又∠ABG+∠BAG=90°,

∴∠EAP=∠ABG,

△APE△BGA中,

,

∴△APE≌△BGA,

∴EP=AG,

同理,FQ=AG,

∴EP=FQ;

3HE=HF,

證明:作EP⊥GAGA的延長線于P,作FQ⊥GAGA的延長線于Q,

四邊形ABME是矩形,

∴∠EAB=90°,即∠EAP+∠BAG=90°,又∠ABG+∠BAG=90°,

∴∠EAP=∠ABG,又∠APE=∠BGA=90°,

∴△APE∽△BGA,

=,即AG=kEP

同理△AQF∽△CGA,

=k,即AG=kFQ

∴EP=FQ,

∵EP⊥GA,FQ⊥GA,

∴EP∥FQ,又EP=FQ

∴HE=HF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△A′B′C′是△ABC平移后得到的,若△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3),B(-4,-1),C(2,0),經(jīng)過平移后A′的坐標(biāo)為(3,6),求相應(yīng)的B′,C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不論x,y為任何實(shí)數(shù),x2+y2﹣4x﹣2y+8的值總是(
A.正數(shù)
B.負(fù)數(shù)
C.非負(fù)數(shù)
D.非正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹“減負(fù)增效”精神,掌握九年級600名學(xué)生每天的自主學(xué)習(xí)情況,某校隨機(jī)抽查了九年級的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時(shí)間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計(jì)圖如下,請根據(jù)統(tǒng)計(jì)圖中的信息回答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)將圖21-1補(bǔ)充完整;

(3)求出圖21-2中圓心角的度數(shù);

(4)請估算該校九年級學(xué)生自主學(xué)習(xí)時(shí)間不少于1.5小時(shí)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:S1=1+ + ,S2=1+ + ,S3=1+ + ,S4=1+ + ,S5=1+ + ,…則 =(用含n的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(m+3,2)與點(diǎn)B(1,n-1)關(guān)于x軸對稱,則m________n________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x2y+xy2=30,xy=6,則x2+y2= , x﹣y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒4個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒2個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0),過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.

(1)求證:AE=DF;
(2)當(dāng)四邊形BFDE是矩形時(shí),求t的值;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)|﹣5|+(π﹣3.1)0﹣( 1+
(2)(x﹣2) +

查看答案和解析>>

同步練習(xí)冊答案