20、如圖,已知⊙O的半徑為5,點(diǎn)A到圓心O的距離為3,則過(guò)點(diǎn)A的所有弦中,最短弦的長(zhǎng)為( 。
分析:最短弦是過(guò)A點(diǎn)垂直于OA的弦.根據(jù)垂徑定理和勾股定理求解.
解答:解:由垂徑定理得,該弦應(yīng)該是以O(shè)A為中垂線(xiàn)的弦BC.
連接OB.
已知OB=5,OA=3,由勾股定理得AB=4.
所以弦BC=8.
故選C.
點(diǎn)評(píng):此題主要考查了學(xué)生對(duì)垂徑定理及勾股定理的理解運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O的半徑為6cm,射線(xiàn)PM經(jīng)過(guò)點(diǎn)O,OP=10cm,射線(xiàn)PN與⊙O相切于點(diǎn)Q.A,B兩點(diǎn)同時(shí)從點(diǎn)精英家教網(wǎng)P出發(fā),點(diǎn)A以5cm/s的速度沿射線(xiàn)PM方向運(yùn)動(dòng),點(diǎn)B以4cm/s的速度沿射線(xiàn)PN方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)求PQ的長(zhǎng);
(2)當(dāng)t為何值時(shí),直線(xiàn)AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長(zhǎng)線(xiàn)上的一點(diǎn),∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線(xiàn);
(2)求弦AC的長(zhǎng);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點(diǎn)E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習(xí)冊(cè)答案