【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長(zhǎng)交AD于F.求證:
(1)△AEF≌△BEC;
(2)四邊形BCFD是平行四邊形.
【答案】證明見(jiàn)解析
【解析】
試題分析:(1)利用等邊三角形的性質(zhì)得出∠DAB=60°,即可得出∠ABC=60°,進(jìn)而求出△AEF≌△BEC(ASA);
(2)利用平行線的判定方法以及直角三角形的性質(zhì)得出CF∥BD,進(jìn)而求出答案.
試題解析:(1)∵E是AB中點(diǎn),∴AE=BE,
∵△ABD是等邊三角形,
∴∠DAB=60°,
∵∠CAB=30°,∠ACB=90°,
∴∠ABC=60°,
在△AEF和△BEC中
,
∴△AEF≌△BEC(ASA);
(2)∵∠DAC=∠DAB+∠BAC,∠DAB=60°,∠CAB=30°,
∴∠DAC=90°,
∴AD∥BC,
∵E是AB的中點(diǎn),∠ACB=90°,
∴EC=AE=BE,
∴∠ECA=30°,∠FEA=60°,
∴∠EFA=∠BDA=60°,
∴CF∥BD,
∴四邊形BCFD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)B在線段AC上,以下四個(gè)等式①AB=BC;②BC=AC;③AC=2AB;④BC=AB.其中能表示B是AC的中點(diǎn)的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)12﹣(﹣18)+(﹣7)﹣15;
(2)(﹣8)+4÷(﹣2);
(3)(﹣10)÷(﹣ )×5;
(4)[1﹣(1﹣0.5× )]×[2﹣(﹣3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)3(2x﹣y)﹣2(4x+ y)
(2)已知xy=4,x﹣y=﹣7.5,求3(xy﹣ y)﹣ (2x+4xy)﹣(﹣2x﹣y)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(-1,0),B(1,1),把線段AB平移,使點(diǎn)B移動(dòng)到點(diǎn)D(3,4)處,這時(shí)點(diǎn)A移動(dòng)到點(diǎn)C處.
(1)畫(huà)出平移后的線段CD,并寫(xiě)出點(diǎn)C的坐標(biāo);
(2)如果將線段CD看成是由線段AB經(jīng)過(guò)一次平移得到的,請(qǐng)指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)五個(gè)整數(shù)從小到大排列后,其中位數(shù)是4,如果這組數(shù)據(jù)的唯一眾數(shù)是6,那么這組數(shù)據(jù)可能的最大的和是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】符號(hào)“⊙”代表一種新的運(yùn)算.例如2⊙3=2+3+4,7⊙2=7+8,3⊙5=3+4+5+6+7,…….
(1)求1⊙3的值;
(2)是否存在數(shù)n,使n⊙8=60?若存在,試求出n的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一個(gè)平面去截一個(gè)幾何體,其截面形狀是圓,則原幾何體可能為___________________
①圓柱 ②圓錐 ③球 ④正方體 ⑤長(zhǎng)方體(請(qǐng)?zhí)钌险_的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com