【題目】如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標分別為(3,2),(﹣1,﹣1),則兩個正方形的位似中心的坐標是 ,

【答案】(1,0);(﹣5,﹣2)
【解析】解:∵正方形ABCD和正方形OEFG中A和點F的坐標分別為(3,2),(﹣1,﹣1),
∴E(﹣1,0)、G(0,﹣1)、D(5,2)、B(3,0)、C(5,0),(1)當E和C是對應(yīng)頂點,G和A是對應(yīng)頂點時,位似中心就是EC與AG的交點,
設(shè)AG所在直線的解析式為y=kx+b(k≠0),
,解得
∴此函數(shù)的解析式為y=x﹣1,與EC的交點坐標是(1,0);(2)當A和E是對應(yīng)頂點,C和G是對應(yīng)頂點時,位似中心就是AE與CG的交點,
設(shè)AE所在直線的解析式為y=kx+b(k≠0),
,解得 ,故此一次函數(shù)的解析式為y= x+ …①,
同理,設(shè)CG所在直線的解析式為y=kx+b(k≠0),
,解得 ,
故此直線的解析式為y= x﹣1…②
聯(lián)立①②得
解得 ,故AE與CG的交點坐標是(﹣5,﹣2).
所以答案是:(1,0)、(﹣5,﹣2).
【考點精析】掌握位似變換是解答本題的根本,需要知道它們具有相似圖形的性質(zhì)外還有圖形的位置關(guān)系(每組對應(yīng)點所在的直線都經(jīng)過同一個點—位似中心).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,E、F分別是AB和BC上的點,且BE=BF.

(1)求證:△ADE≌△CDF;
(2)若∠A=40°,∠DEF=65°,求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東60°方向上,在船B的北偏西37°方向上,AP=30海里.

(1)尺規(guī)作圖:過點P作AB所在直線的垂線,垂足為E(要求:保留作圖痕跡,不寫作法);
(2)求船P到海岸線MN的距離(即PE的長);
(3)若船A、船B分別以20海里/時、15海里/時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船P處.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D作勻速運動,那么△ABP的面積y與點P運動的路程x之間的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為強化安全意識,某校擬在周一至周五的五天中隨機選擇2天進行緊急疏散演練,請完成下列問題:
(1)周三沒有被選擇的概率;
(2)選擇2天恰好為連續(xù)兩天的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明有一個呈等腰直角三角形的積木盒,現(xiàn)在積木盒中只剩下如圖1所示的九個空格,圖2是可供選擇的A,B,C,D四塊積木.

(1)小明選擇把積木A和B放入圖3,要求積木A和B的九個小圓恰好能分別與圖3中的九個小圓重合,請在圖3中畫出他放入方式的示意圖(溫馨提醒:積木A和B的連接小圓的小線段還是要畫上哦。;
(2)現(xiàn)從A、B、C、D四塊積木中任選兩塊,請用列表法或畫樹狀圖法求恰好能全部不重疊放入的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中有5個完全相同的小球,球上分別標著點A(-2,0),B(1,0),C(4,0),D(0,-6),E(-2,3).從袋子中一次性隨機摸出3個球,這3個球分別代表的點恰好能確定一條拋物線(對稱軸平行于y軸)的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,且點O在直線l上,小明用一個三角板學(xué)具(∠ABC=90°,AB=BC=8)做數(shù)學(xué)實驗:
(1)如圖①,若A、B兩點在⊙O上滑動,直線BC分別與⊙O,L相交于點D,E.
①求BD的長;②當OE=6時,求BE的長;

(2)如圖②,當點B在直線l上,點A在⊙O上,BC與⊙O相切于點P時,則切線長PB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是直線l外一點,在l上取兩點B,C,分別以A,C為圓心,BC,AB的長為半徑作弧,兩弧交于點D,分別連接AB,AD,CD,若∠ABC+∠ADC=120°,則∠A的度數(shù)是(

A.100°
B.110°
C.120°
D.125°

查看答案和解析>>

同步練習(xí)冊答案