【題目】已知:關于的方程

(1)若這個方程有兩個不相等的實數(shù)根,求的取值范圍;

(2)若此方程有一個根是1,求的值.

【答案】(1)k>-1(2)k的值為5.

【解析】

1)根據(jù)方程有兩個不相等的實數(shù)根,即可得出=[-2(k+2)]2-4(k2-2k-2)=24k+24>0,解之即可得出k的取值范圍;
2)將x=1代入原方程,解之即可求出k值.

解:(1)∵關于x的方程x2-2(k+2)x+k2-2k-2=0有兩個不相等的實數(shù)根,

∴△=[-2(k+2)]2-4(k2-2k-2)=24k+24>0,

解得:k>-1 k的取值范圍是k>-1;

(2)x=1代入原方程得1-2(k+2)+k2-2k-2=k2-4k-5=(k+1)(k-5)=0

解得:k1=-1(舍去),k2=5

所以k的值為5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把6張長為a、寬為bab)的小長方形紙片不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個長方形)用陰影表示,設這兩個長方形的面積的差為S.當BC的長度變化時,按照同樣的放置方式,S始終保持不變,則ab滿足(

A. a1.5bB. a2.5bC. a3bD. a2b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連結(jié)BE.

(感知)如圖①,過點AAFBEBC于點F.易證ABF≌△BCE.(不需要證明)

(探究)如圖②,取BE的中點M,過點MFGBEBC于點F,交AD于點G.

(1)求證:BE=FG.

(2)連結(jié)CM,若CM=1,則FG的長為   

(應用)如圖③,取BE的中點M,連結(jié)CM.過點CCGBEAD于點G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李大爺按每千克2.1元批發(fā)了一批黃瓜到鎮(zhèn)上出售,為了方便,他帶了一些零錢備用.他先按市場售出一些后,又降低出售.售出黃瓜千克數(shù)x與他手中持有的錢數(shù)y元(含備用零錢)的關系如圖所示,結(jié)合圖象回答下列問題:

1)李大爺自帶的零錢是多少?

2)降價前他每千克黃瓜出售的價格是多少?

3)賣了幾天,黃瓜賣相不好了,隨后他按每千克下降1.6元將剩余的黃瓜售完,這時他手中的錢(含備用的錢)是530元,問他一共批發(fā)了多少千克的黃瓜?

4)請問李大爺虧了還是賺了?若虧(賺)了,虧(賺)多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程的解法中,錯誤的個數(shù)是( 。

①方程2x-1=x+1移項,得3x=0

②方程=1去分母,得x-1=3=x=4

③方程1-去分母,得4-x-2=2x-1

④方程去分母,得2x-2+10-5x=1

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.

(1)若OA=4,求k的值;

(2)連接OC,若BD=BC,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面推理過程:

如圖,∠1+2=230°,bc,則∠1,2,3,4各是多少度?

解:∵∠1=2(__________________),

1+2=230°,

∴∠1=2=___________(填度數(shù)).

bc,

∴∠4=2=_______(填度數(shù))(_______________________________),

2+3=180°(________________________________),

∴∠3=180°-2=____________(填度數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張老師從咸寧出發(fā)到外地參加教育信息化應用技術提高培訓,他可以乘坐普通列車,也可以乘坐高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍.若高鐵的平均速度(千米/小時)是普通列車平均速度的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間少3小時,求高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,身高都為1.6米的小芳、小麗來到溪江公園,準備用她們所學的知識測算南塔的高度.如圖,小芳站在A處測得她看塔頂?shù)难鼋?/span>α45°,小麗站在B處(A、B與塔的軸心共線)測得她看塔頂?shù)难鼋?/span>β30°.她們又測出A、B兩點的距離為30米.假設她們的眼睛離頭頂都為10cm,則可計算出塔高約為(結(jié)果精確到0.01,參考數(shù)據(jù): ≈1.414, ≈1.732)( 。

A. 36.21 B. 37.71 C. 40.98 D. 42.48

查看答案和解析>>

同步練習冊答案