【題目】如圖,Rt△ABC中,∠ACB=90°,點(diǎn)D在AC邊上,以AD為直徑作⊙O交BD的延長線于點(diǎn)E,CE=BC.
(1)求證:CE是⊙O的切線;
(2)若CD=2,BD=2,求⊙O的半徑.
【答案】(1)詳見解析;(2)3.
【解析】
(1)連接OE,根據(jù)等腰三角形的性質(zhì)得到∠1=∠2,∠3=∠4,由∠1+∠5=90°得到∠2+∠3=90°,得∠OEC=90°,于是得到結(jié)論;
(2)設(shè)⊙O的半徑為r,則OD=OE=r,OC=r+2,由OE2+CE2=OC2得到關(guān)于r 的方程,即可求出半徑.
解:(1)如圖,連接OE,
∵∠ACB=90°,
∴∠1+∠5=90°.
∵CE=BC,
∴∠1=∠2.
∵OE=OD,
∴∠3=∠4.
又∵∠4=∠5,
∴∠3=∠5,
∴∠2+∠3=90°,即∠OEC=90°,
∴OE⊥CE.
∵OE是⊙O的半徑,
∴CE是⊙O的切線.
(2)在Rt△BCD中,∠DCB=90°,CD=2,BD=,
BC=CE=4.
設(shè)⊙O的半徑為r,則OD=OE=r,OC=r+2,
在Rt△OEC中,∠OEC=90°,
∴OE2+CE2=OC2,
∴r2+42=(r+2)2,
解得r=3,
∴⊙O的半徑為3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC邊上的中點(diǎn),連接AD.
(1)在AB邊上求作一點(diǎn)O,使得以O為圓心,OB長為半徑的圓與AD相切;(不寫作法,保留作圖痕跡)
(2)設(shè)⊙O與AD相切于點(diǎn)M,已知BD=8,DM=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=5,AC=8,BC=7,點(diǎn)D是BC上一動點(diǎn),DE⊥AB于E,DF⊥AC于F,線段EF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=13,BC=10,點(diǎn)D為BC的中點(diǎn),DE⊥AB于點(diǎn)E,則tan∠BDE的值等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B90°,AB4,BC2,以AC為邊作△ACE,∠ACE90°,AC=CE,延長BC至點(diǎn)D,使CD5,連接DE.求證:△ABC∽△CED.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題10分)如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=,DE=3.
求:(1)⊙O的半徑;(2)弦AC的長;(3)陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,有下列4個結(jié)論:
①;②;③;④;
其中正確的結(jié)論有( )
A.2個B.3個C.4個D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度,2011年市政府共投資2億元人民幣建設(shè)了廉租房8萬平方米,預(yù)計到2013年底三年共累計投資9.5億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長率相同.
(1)求每年市政府投資的增長率;
(2)若這兩年內(nèi)的建設(shè)成本不變,求到2013年底共建設(shè)了多少萬平方米廉租房.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務(wù)層.點(diǎn)A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點(diǎn)B到路面的距離為4.0m.請求出路面CD的寬度.(精確到0.1m)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com