【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線(xiàn)交切線(xiàn)AC于點(diǎn)C,OC與半圓O交于點(diǎn)E,連接BE,DE.
(1)求證:∠BED=∠C;
(2)若OA=5,AD=8,求AC的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)AC=.
【解析】
(1)由切線(xiàn)的性質(zhì)得∠1+∠2=90°;由同角的余角相等得到∠C=∠2.由圓周角定理知∠BED=∠2,故∠BED=∠C;
(2)連接BD.由直徑直徑對(duì)的圓周角是直角得∠ADB=90°,由勾股定理求得BD===6,由△OAC∽△BDA得OA:BD=AC:DA,從而求得AC的值.
(1)證明:∵AC是⊙O的切線(xiàn),AB是⊙O直徑,
∴AB⊥AC.
則∠1+∠2=90°,
又∵OC⊥AD,
∴∠1+∠C=90°,
∴∠C=∠2,
而∠BED=∠2,
∴∠BED=∠C;
(2)解:連接BD,
∵AB是⊙O直徑,
∴∠ADB=90°,
∴BD===6,
∴△OAC∽△BDA,
∴OA:BD=AC:DA,
即5:6=AC:8,
∴AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年某市水果大豐收,兩個(gè)水果基地分別收獲同種水果件、件,現(xiàn)需把這些水果全部運(yùn)往甲、乙兩銷(xiāo)售點(diǎn),從基地運(yùn)往甲、乙兩銷(xiāo)售點(diǎn)的費(fèi)用分別為每件元和元,從基地運(yùn)往甲、乙兩銷(xiāo)售點(diǎn)的費(fèi)用分別為每件元和元,現(xiàn)甲銷(xiāo)售點(diǎn)需要水果件,乙銷(xiāo)售點(diǎn)需要水果件.
設(shè)從基地運(yùn)往甲銷(xiāo)售點(diǎn)水果件,總運(yùn)費(fèi)為元,請(qǐng)用含的代數(shù)式表示,并寫(xiě)出的取值范圍;
若總運(yùn)費(fèi)不超過(guò)元,且基地運(yùn)往甲銷(xiāo)售點(diǎn)的水果不低于件,試確定運(yùn)費(fèi)最低的運(yùn)輸方案,并求出最低運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一艘漁輪在海上C處作業(yè)時(shí),發(fā)生故障,立即向搜救中心發(fā)出救援信號(hào),此時(shí)搜救中心的兩艘救助輪救助一號(hào)和救助二號(hào)分別位于海上A處和B處,B在A的正東方向,且相距100里,測(cè)得地點(diǎn)C在A的南偏東60,在B的南偏東30方向上,如圖所示,若救助一號(hào)和救助二號(hào)的速度分別為40里/小時(shí)和30里/小時(shí),問(wèn)搜救中心應(yīng)派那艘救助輪才能盡早趕到C處救援?(≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材原題解答:
已知是含字母的單項(xiàng)式,要使多項(xiàng)式是某個(gè)多項(xiàng)式的平方,求.
解:根據(jù)完全平方公式,分兩種情況:
當(dāng)為含字母的一次單項(xiàng)式時(shí),
.
當(dāng)為含字母的四次單項(xiàng)式時(shí),
則
為或或
問(wèn)題發(fā)現(xiàn):
由上面問(wèn)題解答過(guò)程,我們可以得到下列等式:
.
觀察等式的左邊多項(xiàng)式的系數(shù)發(fā)現(xiàn):.
愛(ài)學(xué)習(xí)的小明又進(jìn)行了很多運(yùn)算:等等,
發(fā)現(xiàn)同樣有.
于是小明猜測(cè):若多項(xiàng)式(是常數(shù),)是某個(gè)含的多項(xiàng)式的平方,則系數(shù)一定存在某種關(guān)系
問(wèn)題解決:
(1)請(qǐng)用代數(shù)式表示之間的關(guān)系;
(2)若多項(xiàng)式加上一個(gè)含字母y的單項(xiàng)式,就能變形為一個(gè)含的多項(xiàng)式的平方,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的單項(xiàng)式,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長(zhǎng)是____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為(m2),種草所需費(fèi)用1(元)與(m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費(fèi)用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+30000(0≤≤1000).
(1)請(qǐng)直接寫(xiě)出k1、k2和b的值;
(2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請(qǐng)利用W與的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請(qǐng)求出綠化總費(fèi)用W的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(﹣3x2)(x3y)2;
(2)(x﹣5)(2x+1);
(3)(a﹣2)2﹣(a﹣1)(a+1);
(4)(3a﹣b+)(3a﹣b﹣).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當(dāng)陽(yáng)光與水平線(xiàn)成45°角時(shí),測(cè)得旗桿AB落在坡上的影子BD的長(zhǎng)為8米,落在墻上的影子CD的長(zhǎng)為6米,求旗桿AB的高(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,,點(diǎn)是的中點(diǎn),如果點(diǎn)在線(xiàn)段上以的速度由點(diǎn)向點(diǎn)移動(dòng),同時(shí)點(diǎn)在線(xiàn)段上由點(diǎn)向點(diǎn)以的速度移動(dòng),若、同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)移動(dòng)到點(diǎn)時(shí),、都停止運(yùn)動(dòng),設(shè)、移動(dòng)時(shí)間為.
(1)求的取值范圍.
(2)當(dāng)時(shí),問(wèn)與是否全等,并說(shuō)明理由.
(3)時(shí),若為等腰三角形,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com