【題目】計(jì)算:
(1)(﹣3x2)(x3y)2;
(2)(x﹣5)(2x+1);
(3)(a﹣2)2﹣(a﹣1)(a+1);
(4)(3a﹣b+)(3a﹣b﹣).
【答案】(1)﹣3x8y2;(2)2x2﹣9x﹣5;(3)﹣4a+5;(4)9a2﹣6ab+b2﹣.
【解析】
(1)直接利用積的乘方運(yùn)算法則化簡再利用單項(xiàng)式乘以單項(xiàng)式運(yùn)算法則化簡得出答案;(2)直接利用多項(xiàng)式乘以多項(xiàng)式計(jì)算得出答案;(3)直接利用乘法公式計(jì)算得出答案;(4)直接利用乘法公式計(jì)算得出答案.
解:(1)(﹣3x2)(x3y)2
=﹣3x2x6y2
=﹣3x8y2;
(2)(x﹣5)(2x+1)
=2x2﹣9x﹣5;
(3)(a﹣2)2﹣(a﹣1)(a+1)
=a2+4﹣4a﹣(a2﹣1)
=﹣4a+5;
(4)(3a﹣b+)(3a﹣b﹣)
=(3a﹣b)2﹣
=9a2﹣6ab+b2﹣.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點(diǎn).
求證:
(1)△ACE≌△BCD;
(2)AE⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,過點(diǎn)O作弦AD的垂線交切線AC于點(diǎn)C,OC與半圓O交于點(diǎn)E,連接BE,DE.
(1)求證:∠BED=∠C;
(2)若OA=5,AD=8,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,拋物線y=x2﹣2x與x軸交于O、B兩點(diǎn),頂點(diǎn)為P,連接OP、BP,直線y=x﹣4與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)寫出點(diǎn)B坐標(biāo);判斷△OBP的形狀;
(2)將拋物線沿對稱軸平移m個(gè)單位長度,平移的過程中交y軸于點(diǎn)A,分別連接CP、DP;
(i)若拋物線向下平移m個(gè)單位長度,當(dāng)S△PCD= S△POC時(shí),求平移后的拋物線的頂點(diǎn)坐標(biāo);
(ii)在平移過程中,試探究S△PCD和S△POD之間的數(shù)量關(guān)系,直接寫出它們之間的數(shù)量關(guān)系及對應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB與△OCD是以點(diǎn)O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點(diǎn)B的坐標(biāo)是(6,0),則點(diǎn)C的坐標(biāo)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,E是BC邊的中點(diǎn),BF∥AC,EF∥AB,EF=4 cm.
(1)求∠F的度數(shù);
(2)求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結(jié)論正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD的對角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過點(diǎn)E,圓心為O.
(1)利用圖1,求證:四邊形ABCD是菱形.
(2)如圖2,若CD的延長線與半圓相切于點(diǎn)F,已知直徑AB=8.
①連結(jié)OE,求△OBE的面積.
②求弧AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com