【題目】計算:

1)(﹣3x2)(x3y2;

2)(x5)(2x+1);

3)(a22﹣(a1)(a+1);

4)(3ab+)(3ab).

【答案】1)﹣3x8y2;(22x29x5;(3)﹣4a+5;(49a26ab+b2

【解析】

1)直接利用積的乘方運算法則化簡再利用單項式乘以單項式運算法則化簡得出答案;(2)直接利用多項式乘以多項式計算得出答案;(3)直接利用乘法公式計算得出答案;(4)直接利用乘法公式計算得出答案.

解:(1)(﹣3x2x3y2

=﹣3x2x6y2

=﹣3x8y2;

2)(x5)(2x+1

2x29x5;

3)(a22﹣(a1)(a+1

a2+44a﹣(a21

=﹣4a+5;

4)(3ab+)(3ab

=(3ab2

9a26ab+b2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為任意三角形,以邊為邊分別向外作等邊三角形和等邊三角形,連接、并且相交于點.求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=DCE=90°,DAB邊上一點.

求證:

1)△ACE≌△BCD;

2AEAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,過點O作弦AD的垂線交切線AC于點C,OC與半圓O交于點E,連接BE,DE.

(1)求證:∠BED=∠C;

(2)若OA=5,AD=8,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,拋物線y=x2﹣2x與x軸交于O、B兩點,頂點為P,連接OP、BP,直線y=x﹣4與y軸交于點C,與x軸交于點D.

(1)寫出點B坐標;判斷△OBP的形狀;

(2)將拋物線沿對稱軸平移m個單位長度,平移的過程中交y軸于點A,分別連接CP、DP;

i)若拋物線向下平移m個單位長度,當SPCD= SPOC時,求平移后的拋物線的頂點坐標;

ii)在平移過程中,試探究SPCD和SPOD之間的數(shù)量關系,直接寫出它們之間的數(shù)量關系及對應的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAB與OCD是以點O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點B的坐標是(6,0),則點C的坐標是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,∠A30°,EBC邊的中點,BFAC,EFAB,EF4 cm

1)求∠F的度數(shù);

2)求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°AB=AC,AD=AE,點CD,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD的對角線交于點E,有AE=EC,BE=ED,AB為直徑的半圓過點E,圓心為O

1)利用圖1,求證:四邊形ABCD是菱形.

2)如圖2,若CD的延長線與半圓相切于點F,已知直徑AB=8

連結(jié)OE,△OBE的面積.

求弧AE的長.

查看答案和解析>>

同步練習冊答案