【題目】已知拋物線y=﹣x2+bx+c的圖象經(jīng)過點A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的兩個實數(shù)根,且m<n.
(1)求拋物線的解析式;
(2)設(1)中的拋物線與x軸的另一個交點為C,拋物線的頂點為D,求C、D點的坐標和△BCD的面積;
(3)P是線段OC上一點,過點P作PH⊥x軸,交拋物線于點H,若直線BC把△PCH分成面積相等的兩部分,求P點的坐標.
【答案】
(1)
解:解方程x2﹣6x+5=0,
得x1=5,x2=1,
由m<n,知m=1,n=5,
∴A(1,0),B(0,5),
∴ ,即 ;
所求拋物線的解析式為y=﹣x2﹣4x+5.
(2)
解:
由﹣x2﹣4x+5=0,
得x1=﹣5,x2=1,
故C的坐標為(﹣5,0),
由頂點坐標公式,得D(﹣2,9);
過D作DE⊥x軸于E,得E(﹣2,0),
∴S△BCD=S△CDE+S梯形OBDE﹣S△OBC= =15.
(注:延長DB交x軸于F,由S△BCD=S△CFD﹣S△CFB也可求得)
(3)
解:設P(a,0),則H(a,﹣a2﹣4a+5);
直線BC把△PCH分成面積相等的兩部分,須且只須BC等分線段PH,亦即PH的中點,
( )在直線BC上,
易得直線BC方程為:y=x+5;
∴ .
解之得a1=﹣1,a2=﹣5(舍去),
故所求P點坐標為(﹣1,0).
【解析】(1)通過解方程可求出m、n的值,也就求出了點A、B的坐標,將它們代入拋物線的解析式中,通過聯(lián)立方程組即可求得待定系數(shù)的值,從而確定該拋物線的解析式.(2)拋物線的解析式中,令y=0可求得C點坐標,利用公式法可求出拋物線頂點D的坐標;由于△BCD的面積無法直接求得,可過D作x軸的垂線,設垂足為E,分別求出△CDE、梯形DEOB、△BCO的面積,那么△CDE、梯形DEOB的面積和減去△BCO的面積,即可得到△BCD的面積.(3)若直線BC平分△PCH的面積,那么直線BC必過PH的中點,因為只有這樣平分所得的兩個三角形才等底等高,可設出點P的坐標,根據(jù)拋物線的解析式可表示出點H的坐標,進而可求得PH中點的坐標,由于PH中點在直線BC上,可將其代入直線BC的解析式中,由此求出點P的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,AB=AC=5,BC=8,∠PDQ的頂點D在BC邊上,DP交AB邊于點E,DQ交AB邊于點O且交CA的延長線于點F(點F與點A不重合),設∠PDQ=∠B,BD=3.
(1)求證:△BDE∽△CFD;
(2)設BE=x,OA=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)當△AOF是等腰三角形時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:折紙中的數(shù)學
動手操作:
如圖,將矩形ABCD折疊,點B落在AD邊上的點B′處,折痕為GH,再將矩形ABCD折疊,點D落在B′H的延長線上,對應點為D′,折痕為B′E,延長GH于點F,O為GE的中點.
數(shù)學思考:
(1)猜想:線段OB′與OD′的數(shù)量關(guān)系是(不要求說理或證明).
(2)求證:四邊形GFEB′為平行四邊形;
(3)拓展探究:
如圖2,將矩形ABCD折疊,點B對應點B′,點D對應點為D′,折痕分別為GH、EF,∠BHG=∠DEF,延長FD′交B′H于點P,O為GF的中點,試猜想B′O與OP的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣1,0),與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B( ,n).連接OB,若S△AOB=1.
(1)求反比例函數(shù)與一次函數(shù)的關(guān)系式;
(2)直接寫出不等式組 的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小學三年級到六年級的全體學生參加“禮儀”知識測試,試題共有10題,每題10分.從中隨機抽取了部分學生的成績進行統(tǒng)計,發(fā)現(xiàn)抽測的學生每人至少答對了6題,現(xiàn)將有關(guān)數(shù)據(jù)整理后繪制成如下“年級人數(shù)統(tǒng)計圖”和尚未全部完成的“成績情況統(tǒng)計表”.
成績情況統(tǒng)計表
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數(shù) | 21 | 40 | 5 | ||
頻率 | 0.3 |
根據(jù)圖表中提供的信息,回答下列問題:
(1)請將統(tǒng)計表補充完整
成績情況統(tǒng)計表
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數(shù) | 21 | 40 | 5 | ||
頻率 | 0.3 |
(2)測試學生中,成績?yōu)?0分的學生人數(shù)有 名;眾數(shù)是 分;中位數(shù)是 分;
(3)若該小學三年級到六年級共有1800名學生,則可估計出成績?yōu)?0分的學生人數(shù)約有 名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿對角線AC折疊,點B落在點E處,CE與AD相交于點O.
(1)求證:△AOE≌△COD;
(2)若∠OCD=30°,AB= ,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“元旦”期間,某商場為了吸引顧客購物消費,設計了如圖所示的一個轉(zhuǎn)盤,轉(zhuǎn)盤平均分成3份.
(1)求轉(zhuǎn)動該轉(zhuǎn)盤一次所得的顏色是黃色的概率;
(2)請用列表法或畫樹狀圖的方法來說明轉(zhuǎn)動該轉(zhuǎn)盤兩次,兩次所得的顏色相同的概率.
(3)該商場設計了如下兩種獎勵方案:方案一,轉(zhuǎn)動該轉(zhuǎn)盤一次,若轉(zhuǎn)得的顏色是黃色則可得獎;方案二,轉(zhuǎn)動該轉(zhuǎn)盤兩次,若兩次轉(zhuǎn)得的顏色相同則可得獎。如果你是顧客,你選擇哪種方案比較劃算?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,ABCO的頂點A,B的坐標分別是A(3,0),B(0,2).動點P在直線y= x上運動,以點P為圓心,PB長為半徑的⊙P隨點P運動,當⊙P與ABCO的邊相切時,P點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2x+1)x+k2=0①有兩個不相等的實數(shù)根.
(1)求k的取值范圍;
(2)設方程①的兩個實數(shù)根分別為x1 , x2 , 當k=1時,求x12+x22的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com