【題目】如圖①,C為線段BE上的一點(diǎn),分別以BC和CE為邊在BE的同側(cè)作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點(diǎn),連接MN
(1)線段MN和GD的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)將圖①中的正方形CEFG繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,其他條件不變,如圖②,(1)的結(jié)論是否成立?說(shuō)明理由;
(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn)一周,其他條件不變,直接寫出MN的最大值和最小值.
【答案】(1) MN=DG;MN⊥DG;(2)成立,理由見(jiàn)解析;(3)5,2.
【解析】
試題分析:(1)連接FN并延長(zhǎng),與AD交于點(diǎn)S,如圖①.易證明△SDN≌△FGN,則有DS=GF,SN=FN.然后運(yùn)用三角形中位線定理即可解決問(wèn)題;
(2)過(guò)點(diǎn)M作MT⊥DC于T,過(guò)點(diǎn)M作MR⊥BC于R,連接FC、MD、MG,如圖②,根據(jù)平行線分線段成比例即可得BR=GR=BG,DT=ET=DE,根據(jù)梯形中位線定理可得MR=(FG+AB),MT=(EF+AD),從而可得MR=MT,RG=TD,由此可得△MRG≌△MTD,則有MG=MD,∠RMG=∠TMD,則有∠RMT=∠GMD,進(jìn)而可證得△DMG是直角三角形,然后根據(jù)等腰三角形的性質(zhì)和直角三角形斜邊上的中線等于斜邊的一半,即可解決問(wèn)題;
(3)連接GM到點(diǎn)P,使得PM=GM,延長(zhǎng)GF、AD交于點(diǎn)Q,連接AP,DP,DM如圖③,易證△APD≌△CGD,則有PD=DG,根據(jù)等腰三角形的性質(zhì)可得DM⊥PG,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得MN=DG,要求MN的最大值和最小值,只需求DG的最大值和最小值,由GC=CE=3可知點(diǎn)G在以點(diǎn)C為圓心,3為半徑的圓上,再由DC=BC=7,就可求出DG的最大值和最小值.
試題解析:(1)連接FN并延長(zhǎng),與AD交于點(diǎn)S,如圖①.
∵四邊形ABCD和四邊形EFGC都是正方形,
∴∠D=90°,AD=DC,GC=GF,AD∥BE∥GF,
∴∠DSN=∠GFN.
在△SDN和△FGN中,
,
∴△SDN≌△FGN,
∴DS=GF,SN=FN.
∵AM=FM,
∴MN∥AS,MN=AS,
∴∠MNG=∠D=90°,
MN=(AD-DS)=(DC-GF)=(DC-GC)=DG.
(2)(1)的結(jié)論仍然成立.
理由:過(guò)點(diǎn)M作MT⊥DC于T,過(guò)點(diǎn)M作MR⊥BC于R,連接FC、MD、MG,如圖②,
則A、F、C共線,MR∥FG∥AB,MT∥EF∥AD.
∵AM=FM,
∴BR=GR=BG,DT=ET=DE,
∴MR=(FG+AB),MT=(EF+AD).
∵四邊形ABCD和四邊形EFGC都是正方形,
∴FG=GC=EC=EF,AB=BC=DC=AD,
∴MR=MT,RG=TD.
在△MRG和△MTD中,
,
∴△MRG≌△MTD,
∴MG=MD,∠RMG=∠TMD,
∴∠RMT=∠GMD.
∵∠MRC=∠RCT=∠MTC=90°,
∴四邊形MRCT是矩形,
∴∠RMT=90°,
∴∠GMD=90°.
∵M(jìn)G=MD,∠GMD=90°,DN=GN,
∴MN⊥DG,MN=DG.
(3)連接GM到點(diǎn)P,使得PM=GM,延長(zhǎng)GF、AD交于點(diǎn)Q,連接AP,DP,DM如圖③,
在△AMP和△FMG中,
,
∴△AMP≌△FMG,
∴AP=FG,∠APM=∠FGM,
∴AP∥GF,
∴∠PAQ=∠Q,
∵∠DOG=∠ODQ+∠Q=∠OGC+∠GCO,
∠ODQ=∠OGC=90°,
∴∠Q=∠GCO,
∴∠PAQ=∠GCO.
∵四邊形ABCD和四邊形EFGC都是正方形,
∴DA=DC,GF=GC,
∴AP=CG.
在△APD和△CGD中,
,
∴△APD≌△CGD,
∴PD=DG.
∵PM=GM,
∴DM⊥PG.
∵DN=GN,
∴MN=DG.
∵GC=CE=3,
∴點(diǎn)G在以點(diǎn)C為圓心,3為半徑的圓上,
∵DC=BC=7,
∴DG的最大值為7+3=10,最小值為7-3=4,
∴MN的最大值為5,最小值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把多項(xiàng)式(x-2)2-4x+8分解因式,哪一步開(kāi)始出現(xiàn)了錯(cuò)誤( )
解:原式=(x-2)2-(4x-8)…A
=(x-2)2-4(x-2)…B
=(x-2)(x-2+4)…C
=(x-2)(x+2)…D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=與y=﹣kx2+k(k≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三組各有7名成員,測(cè)得三組成員體重?cái)?shù)據(jù)的平均數(shù)都是58,方差分別為s甲2=36,s乙2=25.4,s丙2=16.則數(shù)據(jù)波動(dòng)最小的一組是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)國(guó)旗上的四個(gè)小五角星,通過(guò)_______________移動(dòng)可以相互得到.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別以ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形外部時(shí),連接GF,EF.請(qǐng)判斷GF與EF的關(guān)系(只寫結(jié)論,不需證明);
(2)如圖2,當(dāng)三個(gè)等腰直角三角形都在該平行四邊形內(nèi)部時(shí),連接GF,EF,(1)中結(jié)論還成立嗎?若成立,給出證明;若不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y = x,過(guò)點(diǎn)A(0,1)作y軸的垂線交直線于點(diǎn)B,過(guò)點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過(guò)點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過(guò)點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;…按此作法繼續(xù)下去,則點(diǎn)A2015的坐標(biāo)為( )
A. (0,42015) B. (0,42014) C. (0,32015) D. (0,32014)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°則∠DAC的度數(shù)為 ( )
A.80°
B.70°
C.60°
D.50°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com