【題目】一輛客車從甲地開住乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),兩車距甲地的距離y(千米)與行駛時間式(小時)之間的函數(shù)圖象如圖所示,則下列說法中錯誤的是( 。

A. 客車比出租車晚4小時到達目的地B. 客車速度為60千米時,出租車速度為100千米/

C. 兩車出發(fā)后3.75小時相遇D. 兩車相遇時客車距乙地還有225千米

【答案】D

【解析】

觀察圖形可發(fā)現(xiàn)客車出租車行駛路程均為600千米,客車行駛了10小時,出租車行駛了6小時,即可求得客車和出租車行駛時間和速度;
易求得直線AC和直線OD的解析式,即可求得交點橫坐標x,即可求得相遇時間,和客車行駛距離,即可解題.

解:(1)∵客車行駛了10小時,出租車行駛了6小時,∴客車比出租車晚4小時到達目的地,故A正確;
2)∵客車行駛了10小時,出租車行駛了6小時,∴客車速度為60千米/時,出租車速度為100千米/時,故B正確;
3)∵設(shè)出租車行駛時間為x,距離目的地距離為y
y100x600,
設(shè)客車行駛時間為x,距離目的地距離為y,
y60x;
當兩車相遇時即60x100x600時,x3.75h,故C正確;
3.75小時客車行駛了60×3.75225千米,
∴距離乙地600225375千米,故D錯誤;
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D△ABC邊延長線上,點O是邊AC上一個動點,過O作直線EF∥BC,交∠BCA的平分線于點F,交∠BCA的外角平分線于E.當點O在線段AC上移動(不與點A,C重合)時,下列結(jié)論不一定成立的是( 。

A. 2∠ACE=∠BAC+∠B B. EF=2OC C. ∠FCE=90° D. 四邊形AFCE是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角的兩條高、相交于點,且

1)證明:

2)判斷點是否在的角平分線上,并說明理由.

3)連接是否平行?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點C順時針旋轉(zhuǎn)90°得到EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90°,B=30°,AD為∠CAB的角平分線,CD=3,則DB=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.

(1)OM的長等于_______;

(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點P的位置,并簡要說明你是怎么畫的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知OA,OB是⊙O的半徑,且OAOB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.

(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大;

(2)如圖②,點POA的延長線上,若∠OBQ=65°,求∠AQE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,C,D是O上的點,且OCBD,AD分別與BC,OC相交于點E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,,將線段沿翻折,得到線段,連結(jié)于點,連結(jié)、以下說法:①,②,③,④中,正確的有(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案