【題目】(Ⅰ)如果關(guān)于x的不等式|x+3|+|x﹣2|<a的解集不是空集,求參數(shù)a的取值范圍; (Ⅱ)已知正實(shí)數(shù)a,b,且h=min{a, },求證:0<h≤ .
【答案】解:(Ⅰ)∵|x+3|+|x﹣2|≥|(x+3)﹣(x﹣2)|=5, 當(dāng)且僅當(dāng)﹣3≤x≤2時(shí),等號(hào)成立,故|x+3|+|x﹣2|的最小值為5,
如果關(guān)于x的不等式|x+3|+|x﹣2|<a的解集不是空集,則a>5.
(Ⅱ)證明:∵已知正實(shí)數(shù)a,b,且h=min{a, },
∴0<h≤a,0<h≤ ,
∴0<h2≤ ≤ = ,∴0<h≤ .
【解析】(Ⅰ)如利用絕對(duì)值三角不等式求得|x+3|+|x﹣2|的最小值為5,從而求得參數(shù)a的取值范圍.(Ⅱ)根據(jù)題意可得0<h≤a,0<h≤ ,再來(lái)一用不等式的基本性質(zhì)證得0<h≤ .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=2 ,DE=2,求AD的長(zhǎng),
(3)在(2)的條件下,求弧BD的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且n+1=1+Sn對(duì)一切正整數(shù)n恒成立.
(1)試求當(dāng)a1為何值時(shí),數(shù)列{an}是等比數(shù)列,并求出它的通項(xiàng)公式;
(2)在(1)的條件下,當(dāng)n為何值時(shí),數(shù)列 的前n項(xiàng)和Tn取得最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an>0,且4Sn=an(an+2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= ,Tn=b1+b2+…+bn , 求證:Tn< .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2asin2x﹣2 asinxcosx+1在區(qū)間[0, ]的最大值為4,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“新零售”模式的背景下,某大型零售公司為推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店.為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.
x(個(gè)) | 2 | 3 | 4 | 5 | 6 |
y(百萬(wàn)元) | 2.5 | 3 | 4 | 4.5 | 6 |
(Ⅰ)該公司已經(jīng)過(guò)初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程y= ;
(Ⅱ)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬(wàn)元)與x,y之間的關(guān)系為z=y﹣0.05x2﹣1.4,請(qǐng)結(jié)合(Ⅰ)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?
參考公式: = x+a, = = ,a= ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x2﹣3)ex , 設(shè)關(guān)于x的方程 有n個(gè)不同的實(shí)數(shù)解,則n的所有可能的值為( )
A.3
B.1或3
C.4或6
D.3或4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣(2a﹣1)x﹣lnx(a為常數(shù),a≠0). (Ⅰ)當(dāng)a<0時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大值;
(Ⅱ)記函數(shù)f(x)圖象為曲線C,設(shè)點(diǎn)A(x1 , y1),B(x2 , y2)是曲線C上不同的兩點(diǎn),點(diǎn)M為線段AB的中點(diǎn),過(guò)點(diǎn)M作x軸的垂線交曲線C于點(diǎn)N.判斷曲線C在點(diǎn)N處的切線是否平行于直線AB?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣3x+p=0(p≠0)的兩個(gè)不相等的實(shí)數(shù)根分別為a和b,且a2﹣ab+b2=18,則 + 的值是( )
A.3
B.﹣3
C.5
D.﹣5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com